Menu Close

xtan-cos-1-x-cos-sin-1-x-prove-it-




Question Number 14174 by Nayon last updated on 29/May/17
  xtan(cos^(−1) x)=cos(sin^(−1) x)  prove it.....
$$\:\:{xtan}\left({cos}^{−\mathrm{1}} {x}\right)={cos}\left({sin}^{−\mathrm{1}} {x}\right) \\ $$$${prove}\:{it}….. \\ $$
Answered by ajfour last updated on 29/May/17
let cos^(−1) x=θ   ⇒  x=cos θ  so,   xtan (cos^(−1) x)=cos θtan θ                         =sin θ                         =cos ((π/2)−θ)                         =cos ((π/2)−cos^(−1) x)                         =cos (sin^(−1) x)       (since  sin^(−1) x+cos^(−1) x=(π/2)  ) .
$${let}\:\mathrm{cos}^{−\mathrm{1}} {x}=\theta\:\:\:\Rightarrow\:\:{x}=\mathrm{cos}\:\theta \\ $$$${so},\:\:\:{x}\mathrm{tan}\:\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)=\mathrm{cos}\:\theta\mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{sin}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{cos}^{−\mathrm{1}} {x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{cos}\:\left(\mathrm{sin}^{−\mathrm{1}} {x}\right)\: \\ $$$$\:\:\:\:\left({since}\:\:\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{cos}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}}\:\:\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *