Menu Close

xy-1-x-2-dy-dx-x-0-y-1-




Question Number 27032 by cmaxamuud98 @gmail.com last updated on 01/Jan/18
xy=(1−x^2 )(dy/dx)    x=0 y=1
$${xy}=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\frac{{dy}}{{dx}}\:\:\:\:{x}=\mathrm{0}\:{y}=\mathrm{1} \\ $$
Commented by abdo imad last updated on 01/Jan/18
e.d⇒  (1−x^2 )y^′  −xy =0 with y(0)=1  ⇒ (y^′ /y) = (x/(1−x^2 ))  ⇒ln/y/=  ∫((xdx)/(1−x^2 ))  +λ  ln/y/= −(1/2) ln/1−x^2 /+λ  ⇒ y(x)= k  e^(−(1/2)ln/1−x^(2/) )   ⇒ y(x)=  (k/( (√(/1−x^2 /))))  y(0)=1⇒ k=1  so y(x)=  (1/( (√(/1−x^2 /)))) .
$${e}.{d}\Rightarrow\:\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right){y}^{'} \:−{xy}\:=\mathrm{0}\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\Rightarrow\:\frac{{y}^{'} }{{y}}\:=\:\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\Rightarrow{ln}/{y}/=\:\:\int\frac{{xdx}}{\mathrm{1}−{x}^{\mathrm{2}} }\:\:+\lambda \\ $$$${ln}/{y}/=\:−\frac{\mathrm{1}}{\mathrm{2}}\:{ln}/\mathrm{1}−{x}^{\mathrm{2}} /+\lambda \\ $$$$\Rightarrow\:{y}\left({x}\right)=\:{k}\:\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{ln}/\mathrm{1}−{x}^{\mathrm{2}/} } \\ $$$$\Rightarrow\:{y}\left({x}\right)=\:\:\frac{{k}}{\:\sqrt{/\mathrm{1}−{x}^{\mathrm{2}} /}} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{1}\Rightarrow\:{k}=\mathrm{1}\:\:{so}\:{y}\left({x}\right)=\:\:\frac{\mathrm{1}}{\:\sqrt{/\mathrm{1}−{x}^{\mathrm{2}} /}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *