Menu Close

y-1-4-ln-1-x-1-x-1-2-arctgx-y-




Question Number 127434 by MathSh last updated on 29/Dec/20
y=(1/4)ln((1+x)/(1−x))−(1/2)arctgx  y′=?
y=14ln1+x1x12arctgxy=?
Commented by mohammad17 last updated on 29/Dec/20
y^′ =(1/4)((([(1−x)(1)−(1+x)(−1)](1+x))/((1−x)^3 )))−(1/(2x^2 +2))    y^′ =((2x+2)/((1−x)^3 ))−(1/(2x^2 +2))
y=14([(1x)(1)(1+x)(1)](1+x)(1x)3)12x2+2y=2x+2(1x)312x2+2
Answered by Dwaipayan Shikari last updated on 29/Dec/20
y=(1/4)(log(1+x))−(1/4)log(1−x)−(1/2)tan^(−1) x  y′=(1/(4(1+x)))+(1/(4(1−x)))−(1/2).(1/(1+x^2 ))=(x^2 /(1−x^4 ))
y=14(log(1+x))14log(1x)12tan1xy=14(1+x)+14(1x)12.11+x2=x21x4
Answered by hknkrc46 last updated on 29/Dec/20
• (d /dx)ln ((a(x))/(b(x))) = ((a^′ (x))/(a(x))) − ((b^′ (x))/(b(x)))  ✓ (d/dx)ln ((1 + x)/(1 − x)) = (((1 + x)^′ )/(1 + x)) − (((1 − x)′)/(1−x))  = (1/(1 + x)) + (1/(1−x))  • (d/dx)arctg x = (1/(1 + x^2 ))  ★ y^′  = (1/4)((1/(1 + x)) + (1/(1−x))) − (1/(2(1 + x^2 )))  = (1/2)((1/(1 − x^2 )) − (1/(1 + x^2 ))) = (x^2 /(1 − x^4 ))
ddxlna(x)b(x)=a(x)a(x)b(x)b(x)ddxln1+x1x=(1+x)1+x(1x)1x=11+x+11xddxarctgx=11+x2y=14(11+x+11x)12(1+x2)=12(11x211+x2)=x21x4

Leave a Reply

Your email address will not be published. Required fields are marked *