Menu Close

y-1-e-x-1-e-x-y-




Question Number 26299 by d.monhbayr@gmail.com last updated on 23/Dec/17
y=((1+e^x )/(1−e^x ))  y′=?
$${y}=\frac{\mathrm{1}+{e}^{{x}} }{\mathrm{1}−{e}^{{x}} } \\ $$$${y}'=? \\ $$
Commented by abdo imad last updated on 24/Dec/17
(dy/dx)=((d(1+e^x )(1−e^x )−(1+e^x )d(1−e^x ))/((1−e^x )^2 ))  =((e^x (1−e^x ) +e^x (1+e^x ))/((1−e^x )^2 ))  =((2 e^x )/((1−e^x )^2 ))    with x≠0  d means derivative
$$\frac{{dy}}{{dx}}=\frac{{d}\left(\mathrm{1}+{e}^{{x}} \right)\left(\mathrm{1}−{e}^{{x}} \right)−\left(\mathrm{1}+{e}^{{x}} \right){d}\left(\mathrm{1}−{e}^{{x}} \right)}{\left(\mathrm{1}−{e}^{{x}} \right)^{\mathrm{2}} } \\ $$$$=\frac{{e}^{{x}} \left(\mathrm{1}−{e}^{{x}} \right)\:+{e}^{{x}} \left(\mathrm{1}+{e}^{{x}} \right)}{\left(\mathrm{1}−{e}^{{x}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}\:{e}^{{x}} }{\left(\mathrm{1}−{e}^{{x}} \right)^{\mathrm{2}} }\:\:\:\:{with}\:{x}\neq\mathrm{0}\:\:{d}\:{means}\:{derivative} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *