Menu Close

y-2-xy-y-0-find-the-solution-




Question Number 87059 by jagoll last updated on 02/Apr/20
(y ′)^2 −xy′ +y = 0  find the solution
(y)2xy+y=0findthesolution
Answered by mr W last updated on 03/Apr/20
y′=(1/2)(x±(√(x^2 −4y)))  let u=x^2 −4y    case 1: u=constant=C  ⇒x^2 −4y=−4C  ⇒y=(x^2 /4)+C  y′=(x/2)  ((x/2))^2 −x((x/2))+(x^2 /4)+C=0 ⇒C=0  ⇒y=(x^2 /4)    case 2: u≠constant  (du/dx)=2x−4y′  2x−(du/dx)=2x±2(√u)  (du/dx)=±2(√u)  ∫(du/(2(√u)))=±∫dx  (√u)=C±x  u=(C±x)^2 =x^2 +C(C±2x)  x^2 −4y=x^2 +C(C±2x)  ⇒y=−((C(C±2x))/4)    check:  y′=−((±C)/2)  xy′=−((±Cx)/2)  xy′−y=−((±2Cx)/4)+((C(C±2x))/4)=(C^2 /4)=(y′)^2
y=12(x±x24y)letu=x24ycase1:u=constant=Cx24y=4Cy=x24+Cy=x2(x2)2x(x2)+x24+C=0C=0y=x24case2:uconstantdudx=2x4y2xdudx=2x±2ududx=±2udu2u=±dxu=C±xu=(C±x)2=x2+C(C±2x)x24y=x2+C(C±2x)y=C(C±2x)4check:y=±C2xy=±Cx2xyy=±2Cx4+C(C±2x)4=C24=(y)2
Commented by jagoll last updated on 03/Apr/20
sir y = (x^2 /4) ?
siry=x24?
Commented by mr W last updated on 03/Apr/20
yes. y=(x^2 /4) is also a solution, see  above.
yes.y=x24isalsoasolution,seeabove.

Leave a Reply

Your email address will not be published. Required fields are marked *