Question Number 87905 by john santu last updated on 07/Apr/20
$$\mathrm{y}'\:=\:\mathrm{2}^{\mathrm{y}} \\ $$
Commented by john santu last updated on 07/Apr/20
$$\mathrm{2}^{−\mathrm{y}} .\mathrm{y}'\:=\:\mathrm{1} \\ $$$$\mathrm{e}^{−\mathrm{y}\:\mathrm{ln}\:\mathrm{2}} \:.\mathrm{y}'\:=\:\mathrm{1}\: \\ $$$$\left(\frac{\mathrm{e}^{−\mathrm{y}\:\mathrm{ln}\:\mathrm{2}} }{−\mathrm{ln}\:\mathrm{2}}\right)^{,} =\:\mathrm{1}\:\Rightarrow\frac{\mathrm{e}^{−\mathrm{y}\:\mathrm{ln}\:\mathrm{2}} }{−\mathrm{ln}\:\mathrm{2}}\:=\:\mathrm{t}\:+\:\mathrm{c} \\ $$$$\mathrm{e}^{−\mathrm{y}\:\mathrm{ln}\:\mathrm{2}} \:=\:−\mathrm{t}.\mathrm{ln}\:\mathrm{2}\:+\:\mathrm{C} \\ $$$$\mathrm{2}^{−\mathrm{y}} \:=\:−\mathrm{t}\:\mathrm{ln}\left(\mathrm{2}\right)\:+\:\mathrm{C} \\ $$$$\Rightarrow−\mathrm{y}\:=\:\mathrm{log}_{\mathrm{2}} \:\left(−\mathrm{t}\:\mathrm{ln}\:\left(\mathrm{2}\right)+\mathrm{C}\right) \\ $$$$\mathrm{y}\:=\:−\:\mathrm{log}_{\mathrm{2}} \left(\mathrm{C}−\mathrm{ln}\left(\mathrm{2}^{\mathrm{t}} \right)\right) \\ $$
Answered by Joel578 last updated on 07/Apr/20
$$\frac{{dy}}{{dx}}\:=\:\mathrm{2}^{{y}} \:\Rightarrow\:\int\:\mathrm{2}^{−{y}} \:{dy}\:=\:\int\:{dx} \\ $$$$\Rightarrow\:−\frac{\mathrm{2}^{−{y}} }{\mathrm{ln}\:\mathrm{2}}\:=\:{x}\:+\:{C}_{\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{2}^{−{y}} \:=\:\left({C}_{\mathrm{2}} \:−\:{x}\right)\mathrm{ln}\:\mathrm{2}\:\:\:\:\:,\:\:{C}_{\mathrm{2}} \:=\:−{C}_{\mathrm{1}} \\ $$$$\Rightarrow\:−{y}\:\mathrm{ln}\:\mathrm{2}\:=\:\mathrm{ln}\:\left[\left({C}_{\mathrm{2}} \:−\:{x}\right)\mathrm{ln}\:\mathrm{2}\right]\: \\ $$$$\Rightarrow\:{y}\left({x}\right)\:=\:−\frac{\mathrm{ln}\:\left[\left({C}_{\mathrm{2}} \:−\:{x}\right)\mathrm{ln}\:\mathrm{2}\right]}{\mathrm{ln}\:\mathrm{2}}\:=\:−\:\mathrm{log}_{\mathrm{2}} \:\left[\left({C}_{\mathrm{2}} \:−\:{x}\right)\mathrm{ln}\:\mathrm{2}\right] \\ $$