Menu Close

y-2-y-sec-3-x-




Question Number 26904 by sorour87 last updated on 31/Dec/17
y^((2)) +y=sec^3 x
y(2)+y=sec3x
Commented by prakash jain last updated on 31/Dec/17
g(x)=sec^3 x  Homogenous solution  λ^2 +1=0⇒λ=±i  y_h =c_1 e^(ix) +c_2 e^(−ix)   y_h =(c_1 +c_2 )cos x+i(c_1 −c_2 )cos x  y_h =C_1 cos x+C_2 cos x  y_1 (x)=cos x  y_2 (x)=sin (x)  W(y_1 ,y_2 )= determinant (((cos x),(sin x)),((−sin x),(cos x)))=1  u_1 (x)=−∫((y_2 (x)g(x))/1)dx  =−∫sec^3 xsin xdx=−∫sec^2 xtan xdx  =−(1/2)sec^2 x  u_2 (x)=∫((y_1 (x)g(x))/1)dx  =∫sec^3 x∙cos xdx=tan x  y_p (x)=u_1 y_1 +u_2 y_2 =−((sec x)/2)+sin xtan x
g(x)=sec3xHomogenoussolutionλ2+1=0λ=±iyh=c1eix+c2eixyh=(c1+c2)cosx+i(c1c2)cosxyh=C1cosx+C2cosxy1(x)=cosxy2(x)=sin(x)W(y1,y2)=|cosxsinxsinxcosx|=1u1(x)=y2(x)g(x)1dx=sec3xsinxdx=sec2xtanxdx=12sec2xu2(x)=y1(x)g(x)1dx=sec3xcosxdx=tanxyp(x)=u1y1+u2y2=secx2+sinxtanx
Answered by prakash jain last updated on 31/Dec/17
y=y_h +y_p
y=yh+yp
Commented by sorour87 last updated on 31/Dec/17
ok. thanks
ok.thanks
Commented by prakash jain last updated on 31/Dec/17
The following page desxribes the method of variation of parameters. http://tutorial.math.lamar.edu/Classes/DE/VariationofParameters.aspx

Leave a Reply

Your email address will not be published. Required fields are marked *