Menu Close

y-2x-3y-1-2-find-the-solution-




Question Number 84212 by jagoll last updated on 10/Mar/20
y′ = (2x+3y+1)^2   find the solution
y=(2x+3y+1)2findthesolution
Commented by niroj last updated on 10/Mar/20
  (dy/dx)= (2x+3y+1)^2    put,  2x+3y+1=v       2+3(dy/dx)= (dv/dx)         3 (dy/dx)= (dv/dx)−2          (dy/dx)= (1/3)((dv/dx)−2)    (1/3)((dv/dx)−2)=v^2      (dv/dx)−2=3v^2       (dv/dx)= 3v^2 +2      (1/(3v^2 +2))dv=dx     integrating both side.    (1/3) ∫(1/((v)^2 +((√(2/3)) )^2 ))dv=∫dx    (1/3).(1/( (√(2/3))))tan^(−1) (v/( (√(2/3)))) = x+c    (1/3).((√3)/( (√2))).tan^(−1) ((v(√3))/( (√2))) =x+c      (1/( (√6)))tan^(−1)  v ((√6)/2)=x+c      tan^(−1) v. ((√6)/2)= (√6) (x+c)        ((v(√6))/2)= tan(√6)  (x+c)        (2x+3y+1)(√6) =2 tan(√6) (x+c)    2x+3y+1 = ((√6)/3) tan(√6)  (x+c) .
dydx=(2x+3y+1)2put,2x+3y+1=v2+3dydx=dvdx3dydx=dvdx2dydx=13(dvdx2)13(dvdx2)=v2dvdx2=3v2dvdx=3v2+213v2+2dv=dxintegratingbothside.131(v)2+(23)2dv=dx13.123tan1v23=x+c13.32.tan1v32=x+c16tan1v62=x+ctan1v.62=6(x+c)v62=tan6(x+c)(2x+3y+1)6=2tan6(x+c)2x+3y+1=63tan6(x+c).
Answered by mr W last updated on 10/Mar/20
let t=2x+3y+1  (dt/dx)=2+3(dy/dx)  y′=(dy/dx)=(1/3)((dt/dx)−2)  (1/3)((dt/dx)−2)=t^2   (dt/dx)=3t^2 +2  (dt/(3t^2 +2))=dx  ∫(dt/(3t^2 +2))=∫dx  ((tan^(−1) ((3t)/( (√6))))/( (√6)))=x+C  ⇒t=((√6)/3) tan ((√6)x+C)  ⇒2x+3y+1=((√6)/3) tan ((√6)x+C)  ⇒y=(1/3)[((√6)/3) tan ((√6)x+C)−2x−1]
lett=2x+3y+1dtdx=2+3dydxy=dydx=13(dtdx2)13(dtdx2)=t2dtdx=3t2+2dt3t2+2=dxdt3t2+2=dxtan13t66=x+Ct=63tan(6x+C)2x+3y+1=63tan(6x+C)y=13[63tan(6x+C)2x1]

Leave a Reply

Your email address will not be published. Required fields are marked *