Menu Close

y-2xy-cos-x-2x-sin-x-




Question Number 93059 by Ar Brandon last updated on 10/May/20
y^′ +2xy=cos x+2x sin x
$$\mathrm{y}^{'} +\mathrm{2xy}=\mathrm{cos}\:\mathrm{x}+\mathrm{2x}\:\mathrm{sin}\:\mathrm{x} \\ $$
Answered by TANMAY PANACEA … last updated on 10/May/20
dy+2xydx=cosxdx+2xsinxdx  d(y)+yd(x^2 )=d(sinx)+sinxd(x^2 )  d(y)−d(sinx)=sinxd(x^2 )−yd(x^2 )  d(y−sinx)=−d(x^2 )(y−sinx)  ((d(y−sinx))/(y−sinx))+d(x^2 )=dc  ∫((d(y−sinx))/(y−sinx))+∫d(x^2 )=∫dc  ln(y−sinx)+x^2 =c
$${dy}+\mathrm{2}{xydx}={cosxdx}+\mathrm{2}{xsinxdx} \\ $$$${d}\left({y}\right)+{yd}\left({x}^{\mathrm{2}} \right)={d}\left({sinx}\right)+{sinxd}\left({x}^{\mathrm{2}} \right) \\ $$$${d}\left({y}\right)−{d}\left({sinx}\right)={sinxd}\left({x}^{\mathrm{2}} \right)−{yd}\left({x}^{\mathrm{2}} \right) \\ $$$${d}\left({y}−{sinx}\right)=−{d}\left({x}^{\mathrm{2}} \right)\left({y}−{sinx}\right) \\ $$$$\frac{{d}\left({y}−{sinx}\right)}{{y}−{sinx}}+{d}\left({x}^{\mathrm{2}} \right)={dc} \\ $$$$\int\frac{{d}\left({y}−{sinx}\right)}{{y}−{sinx}}+\int{d}\left({x}^{\mathrm{2}} \right)=\int{dc} \\ $$$${ln}\left({y}−{sinx}\right)+{x}^{\mathrm{2}} ={c} \\ $$
Commented by Ar Brandon last updated on 10/May/20
Thanks ��

Leave a Reply

Your email address will not be published. Required fields are marked *