Menu Close

y-2y-e-x-




Question Number 91417 by jagoll last updated on 30/Apr/20
y′+2y=e^(−x)
$${y}'+\mathrm{2}{y}={e}^{−{x}} \\ $$
Commented by john santu last updated on 30/Apr/20
IF u(x)= e^(∫ 2 dx)  = e^(2x)   solution   y = ((∫ u(x)q(x) dx +C)/(u(x)))  y = ((∫ e^(2x) .e^(−x)  dx +C)/e^(2x) )   y= Ce^(−2x) + e^(−x)
$${IF}\:{u}\left({x}\right)=\:{e}^{\int\:\mathrm{2}\:{dx}} \:=\:{e}^{\mathrm{2}{x}} \\ $$$${solution}\: \\ $$$${y}\:=\:\frac{\int\:{u}\left({x}\right){q}\left({x}\right)\:{dx}\:+{C}}{{u}\left({x}\right)} \\ $$$${y}\:=\:\frac{\int\:{e}^{\mathrm{2}{x}} .{e}^{−{x}} \:{dx}\:+{C}}{{e}^{\mathrm{2}{x}} }\: \\ $$$${y}=\:{Ce}^{−\mathrm{2}{x}} +\:{e}^{−{x}} \: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *