Menu Close

y-2y-y-x-2-e-x-cos-x-what-is-particular-solution-




Question Number 92852 by i jagooll last updated on 09/May/20
y′′+2y′+y = x^2 e^(−x) cos x  what is particular solution
y+2y+y=x2excosxwhatisparticularsolution
Commented by i jagooll last updated on 09/May/20
Mr Niroj's favorite ����
Answered by Joel578 last updated on 09/May/20
• Homogeneous solution with char. eq.  λ^2  + 2λ + 1 = 0 → λ_(1,2)  = −1  ⇒ y_h (x) = c_1 e^(−x)  + c_2 xe^(−x)     • Particular solution for r(x) = x^2 e^(−x) cos x  using variation of parameters  Let y_p (x) = u(x)y_1 (x) + v(x)y_2 (x)  with y_1 (x) = e^(−x) ,   y_2 (x) = xe^(−x)   and u(x) = −∫ ((r(x)y_2 (x))/(W(x))) dx,  v(x) = ∫ ((r(x)y_1 (x))/(W(x))) dx  Now,   W(x) =  determinant ((y_1 ,y_2 ),((y_1 ′),(y_2 ′)))=  determinant (((  e^(−x) ),(       xe^(−x) )),((−e^(−x) ),(e^(−x)  − xe^(−x) )))                = e^(−2x)   Hence,  u(x) = −∫ (((x^2 e^(−x) cos x)(xe^(−x) ))/e^(−2x) ) dx = −∫ x^3 cos x dx  v(x) = ∫ (((x^2 e^(−x) cos x)(e^(−x) ))/e^(−2x) ) dx = ∫ x^2 cos x dx  ⇒ y_p (x) = ...
Homogeneoussolutionwithchar.eq.λ2+2λ+1=0λ1,2=1yh(x)=c1ex+c2xexParticularsolutionforr(x)=x2excosxusingvariationofparametersLetyp(x)=u(x)y1(x)+v(x)y2(x)withy1(x)=ex,y2(x)=xexandu(x)=r(x)y2(x)W(x)dx,v(x)=r(x)y1(x)W(x)dxNow,W(x)=|y1y2y1y2|=|exxexexexxex|=e2xHence,u(x)=(x2excosx)(xex)e2xdx=x3cosxdxv(x)=(x2excosx)(ex)e2xdx=x2cosxdxyp(x)=
Commented by i jagooll last updated on 09/May/20
tobe continue sir
tobecontinuesir
Commented by Joel578 last updated on 09/May/20
I think the integrals are easy for someone that asking  an ODE problem, so I leave the rest for you
IthinktheintegralsareeasyforsomeonethataskinganODEproblem,soIleavetherestforyou
Commented by Joel578 last updated on 09/May/20
������
Commented by i jagooll last updated on 09/May/20
��������
Commented by i jagooll last updated on 09/May/20
v(x)=x^2 sin x+2xcos x−2sin x  u(x) =−x^3 sin x−3x^2 cos x+6xsin x+6cos x
v(x)=x2sinx+2xcosx2sinxu(x)=x3sinx3x2cosx+6xsinx+6cosx
Answered by niroj last updated on 09/May/20
   PI = (( x^2 e^(−x) cos x)/(D^2 +2D+1))       = e^(−x)  (( x^2  cos x)/(−1+2D+1))      = e^(−x) (( x^2 cos x)/(2D))        = (e^(−x) /2)∫x^2  cos x dx        x^2 (sin x)−∫2x( sin x )dx      x^2  sin x−2[ x (−cos x) −∫1.(−cosx) dx]    x^2 sin x +2x cosx+2sin x .   PI= (e^(−x) /2)(x^2 sin x+2xcos x+2 sinx)      = e^(−x)  ((1/2)x^2 sin x+ x cos x+ sin x).
PI=x2excosxD2+2D+1=exx2cosx1+2D+1=exx2cosx2D=ex2x2cosxdxx2(sinx)2x(sinx)dxx2sinx2[x(cosx)1.(cosx)dx]x2sinx+2xcosx+2sinx.PI=ex2(x2sinx+2xcosx+2sinx)=ex(12x2sinx+xcosx+sinx).
Commented by i jagooll last updated on 09/May/20
I have a lot to learn in this way sir ������
Commented by niroj last updated on 09/May/20
 you can solve by other method also   like using by variation of parameter.
youcansolvebyothermethodalsolikeusingbyvariationofparameter.
Answered by niroj last updated on 09/May/20
 By the help of variation parametrs,    (D^2 +2D+1)y= x^2  e^(−x)  cos x     A.E. , m^2 +2m+1=0         (m+1)^2 =0       m=−1, −1   CF= e^(−x) (C_(1 ) +C_2 x)          =C_1  e^(−x) + C_2 xe^(−x)     PI = −y_1 ∫ ((y_2  xdx)/w) +y_2 ∫ ((y_1  xdx)/w)      y_1 = e^(−x)  ,     y_2 =x e^(−x)  ,      Wronskian^′ s determinants:    W=  determinant (((y_1         y_2 )),((y_1 ^′         y_2 ^′ )))       =  determinant ((( e^(−x)                    e^(−x) x)),((−e^(−x)       e^(−x) −xe^(−x) )))           w=e^(−x)  (e^(−x) −xe^(−x) )+(e^(−x) x.e^(−x) )        = e^(−2x) −xe^(−2x) +xe^(−2x)        = e^(−2x)      PI = −e^(−x)  ∫(( x e^(−x) x^2 e^(−x)  cos x dx)/e^(−2x) ) + xe^(−x) ∫ ((e^(−x)   x^2 e^(−x) cos x dx)/e^(−2x) )    =  −e^(−x) ∫x^3 cos x  dx +x e^(−x) ∫x^2 cos xdx    now can get easily....
Bythehelpofvariationparametrs,(D2+2D+1)y=x2excosxA.E.,m2+2m+1=0(m+1)2=0m=1,1CF=ex(C1+C2x)=C1ex+C2xexPI=y1y2xdxw+y2y1xdxwy1=ex,y2=xex,Wronskiansdeterminants:W=|y1y2y1y2|=|exexxexexxex|w=ex(exxex)+(exx.ex)=e2xxe2x+xe2x=e2xPI=exxexx2excosxdxe2x+xexexx2excosxdxe2x=exx3cosxdx+xexx2cosxdxnowcangeteasily.
Commented by john santu last updated on 09/May/20
great...cheer ������

Leave a Reply

Your email address will not be published. Required fields are marked *