y-4y-3y-e-x-1-e-x- Tinku Tara June 4, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 101419 by bemath last updated on 02/Jul/20 y″−4y′+3y=ex1+ex Answered by john santu last updated on 02/Jul/20 AE:λ2−4λ+3=0(λ−1)(λ−3)=0yh=C1ex+C2e3x→y1=ex∧y2=e3xW=|y1y2y1′y2′|=|exe3xex3e3x|W=3e4x−e4x=2e3xparticularintegral=−ex2∫exex(1+ex)dx+e3x2∫exe4x.ex(1+ex)dx=−ex2∫dx1+ex+e3x2∫dxe2x(1+ex)I1=∫dx1+ex[setex=z,dx=dzex]I1=∫dzz(1+z)=∫dzz−∫dz1+zI1=ln(z1+z)=ln(ex1+ex)I2=∫dxe2x(1+ex)[setex=p]I2=∫dpp3(1+p)=∫dpp−∫dpp2+∫dpp3−∫dp(1+p)I2=ln(p)+1p−12p2−ln(1+p)I2=ln(ex1+ex)+1ex−12e2xparticularsolutionyp=−ex2ln(ex1+ex)+e3x2(1ex−12e2x+ln(ex1+ex))Generallsolutionyg=yh+yp Answered by mathmax by abdo last updated on 02/Jul/20 (he)→y″−4y′+3y=0→r2−4r+3=0Δ′=4−3=1⇒r1=2+1=3andr2=2−1=1⇒yh=ae3x+bex=au1+bu2W(u1,u2)=|e3xex3e3xex|=e4x−3e4x=−2e4xW1=|oexex1+exex|=−e2x1+exW2=|e3x03e3xex1+ex|=e4x1+exv1=∫w1wdx=∫−e2x1+ex×1−2e4x=∫e−2x2(1+ex)=ex=t12∫1t2(1+t)×dtt=12∫dtt3(1+t)letdecomposeF(t)=1(t+1)t3F(t)=at+1+bt+ct2+dt3a=−1,d=1⇒F(t)=−1t+1+bt+ct2+1t3limt→+∞tF(t)=0=−1+b⇒b=1⇒F(t)=−1t+1+1t+ct2+1t3F(1)=12=−12+1+c+1=32+c⇒c=12−32=−1⇒F(t)=−1t+1+1t−1t2+1t3⇒v1=12(−ln∣t+1∣+ln∣t∣+1t−12t2)=12(ln(ex1+ex)+e−x−12e−2x)v2=∫w2wdx=∫e4x(1+ex)(−2e4x)dx=−12∫dx1+ex=ex=t−12∫dtt(1+t)=−12∫(1t−1t+1)dt=−12ln∣tt+1∣=−12ln(ex1+ex)⇒yp=u1v1+u2v2=e3x×12{ln(ex1+ex)+e−x−12e−2x}+ex×(−12ln(ex1+ex))=12e3xln(ex1+ex)+12e2x−14ex−12exln(ex1+ex)=12(e3x−ex)ln(ex1+ex)+e2x2−ex4thegeneralsolutionisy=yh+yp Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: An-open-pipe-40cm-long-and-a-closed-pipe-32cm-long-with-the-same-diameter-sound-the-same-fundamental-frequency-in-unison-Find-the-end-correction-of-these-pipes-Next Next post: If-polynomial-x-3-9x-2-11x-1-0-have-the-roots-are-a-b-an-c-Given-a-b-c-then-4-18-2-8- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.