Menu Close

y-5y-10y-2-y-0-1-




Question Number 127578 by bramlexs22 last updated on 31/Dec/20
 y ′′ = 5y−10y^2    y(0) = 1
$$\:\mathrm{y}\:''\:=\:\mathrm{5y}−\mathrm{10y}^{\mathrm{2}} \\ $$$$\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{1} \\ $$
Answered by mr W last updated on 31/Dec/20
y′′=((dy′)/dx)=y′((dy′)/dy)  y′((dy′)/dy)=5y−10y^2   (1/2)(y′)^2 =((5y^2 )/2)−((10y^3 )/3)+(C_1 /2)  y′=(dy/dx)=±(√(5y^2 −((20y^3 )/3)+C_1 ))  ±(dy/( (√(5y^2 −((20y^3 )/3)+C_1 ))))=dx  x=±∫(dy/( (√(5y^2 −((20y^3 )/3)+C_1 ))))  ......
$${y}''=\frac{{dy}'}{{dx}}={y}'\frac{{dy}'}{{dy}} \\ $$$${y}'\frac{{dy}'}{{dy}}=\mathrm{5}{y}−\mathrm{10}{y}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({y}'\right)^{\mathrm{2}} =\frac{\mathrm{5}{y}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{10}{y}^{\mathrm{3}} }{\mathrm{3}}+\frac{{C}_{\mathrm{1}} }{\mathrm{2}} \\ $$$${y}'=\frac{{dy}}{{dx}}=\pm\sqrt{\mathrm{5}{y}^{\mathrm{2}} −\frac{\mathrm{20}{y}^{\mathrm{3}} }{\mathrm{3}}+{C}_{\mathrm{1}} } \\ $$$$\pm\frac{{dy}}{\:\sqrt{\mathrm{5}{y}^{\mathrm{2}} −\frac{\mathrm{20}{y}^{\mathrm{3}} }{\mathrm{3}}+{C}_{\mathrm{1}} }}={dx} \\ $$$${x}=\pm\int\frac{{dy}}{\:\sqrt{\mathrm{5}{y}^{\mathrm{2}} −\frac{\mathrm{20}{y}^{\mathrm{3}} }{\mathrm{3}}+{C}_{\mathrm{1}} }} \\ $$$$…… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *