Menu Close

y-9-1-3-3-1-3-4-1-1-y-3-




Question Number 170945 by Rasheed.Sindhi last updated on 04/Jun/22
  y=(9)^(1/3)  +(3)^(1/3)  +4   ;   (1+(1/y))^3 =?
$$ \\ $$$${y}=\sqrt[{\mathrm{3}}]{\mathrm{9}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3}}\:+\mathrm{4}\:\:\:;\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{3}} =? \\ $$$$ \\ $$
Answered by cortano1 last updated on 04/Jun/22
 y−3=(9)^(1/3)  +(3)^(1/3)  +1  (y−3)((3)^(1/3) −1)=2  y=(2/( (3)^(1/3) −1))+3=((3(3)^(1/3) −1)/( (3)^(1/3) −1))  (1+(1/y))^3 =(1+(((3)^(1/3) −1)/(3(3)^(1/3) −1)))^3   =(((4(3)^(1/3) −2)/(3(3)^(1/3) −1)))^3  =((48(3)^(1/3) −96(9)^(1/3) +184)/(9(3)^(1/3) −27(9)^(1/3) +80))
$$\:{y}−\mathrm{3}=\sqrt[{\mathrm{3}}]{\mathrm{9}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3}}\:+\mathrm{1} \\ $$$$\left({y}−\mathrm{3}\right)\left(\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}\right)=\mathrm{2} \\ $$$${y}=\frac{\mathrm{2}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}+\mathrm{3}=\frac{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{y}}\right)^{\mathrm{3}} =\left(\mathrm{1}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}\right)^{\mathrm{3}} \\ $$$$=\left(\frac{\mathrm{4}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{2}}{\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}\right)^{\mathrm{3}} \:=\frac{\mathrm{48}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{96}\sqrt[{\mathrm{3}}]{\mathrm{9}}+\mathrm{184}}{\mathrm{9}\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{27}\sqrt[{\mathrm{3}}]{\mathrm{9}}+\mathrm{80}} \\ $$
Commented by Rasheed.Sindhi last updated on 06/Jun/22
Thank you sir!
$$\mathcal{T}{hank}\:{you}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *