Menu Close

y-arc-tan-1-cosx-1-cosx-y-




Question Number 64514 by Mikael last updated on 18/Jul/19
y=arc tan[(√((1−cosx)/(1+cosx)))]  y^� =?
$${y}={arc}\:{tan}\left[\sqrt{\frac{\mathrm{1}−{cosx}}{\mathrm{1}+{cosx}}}\right] \\ $$$${y}^{} =? \\ $$
Commented by mathmax by abdo last updated on 18/Jul/19
we have ((1−cosx)/(1+cosx)) =((2sin^2 ((x/2)))/(2cos^2 ((x/2)))) =tan^2 ((x/2)) ⇒(√((1−cosx)/(1+cosx)))=∣tan((x/2))∣  case 1  tan((x/2))>0 ⇒y(x)=(x/2) ⇒y^′ (x)=(1/2)  case 2  tan((x/2))<0 ⇒y(x) =−(x/2) ⇒y^′ (x)=−(1/2)
$${we}\:{have}\:\frac{\mathrm{1}−{cosx}}{\mathrm{1}+{cosx}}\:=\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\:={tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:\Rightarrow\sqrt{\frac{\mathrm{1}−{cosx}}{\mathrm{1}+{cosx}}}=\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)\mid \\ $$$${case}\:\mathrm{1}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)>\mathrm{0}\:\Rightarrow{y}\left({x}\right)=\frac{{x}}{\mathrm{2}}\:\Rightarrow{y}^{'} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${case}\:\mathrm{2}\:\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)<\mathrm{0}\:\Rightarrow{y}\left({x}\right)\:=−\frac{{x}}{\mathrm{2}}\:\Rightarrow{y}^{'} \left({x}\right)=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Mikael last updated on 19/Jul/19
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *