y-ax-3-bx-2-cx-d-then-prove-that-the-equation-y-0-has-only-one-real-root-if-a-9ad-bc-2-4-b-2-3ac-c-2-3bd-gt-0-provided-b-2-gt-3ac- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 24565 by ajfour last updated on 21/Nov/17 y=ax3+bx2+cx+d,thenprovethattheequationy=0hasonlyonerealrootifa[(9ad−bc)2−4(b2−3ac)(c2−3bd)]>0providedb2>3ac. Answered by ajfour last updated on 21/Nov/17 Commented by ajfour last updated on 21/Nov/17 Ifthelocalminimumvalueandthelocalmaximumvalue,both,areofthesamesign,then,ibelieve,therecanbejustonerealrootofacubicequation.y=ax3+bx2+cx+d⇒dydx=3ax2+2bx+cletatx=α,βdydx=0⇒αβ=c3aand(α+β)=−2b3a⇒3aα2+2bα+c=0…..(i)3aβ2+2bβ+c=0…..(ii)Foronerealrooty(α)×y(β)>0or3y(α)×3y(β)>03y(α)=3aα3+3bα2+3cα+3dsubtractingα×(i)fromthis3y(α)=bα2+2cα+3d=b3a(3aα2)+2cα+3dusing(i)again:3y(α)=−b3a(2bα+c)+2cα+3d=2α(c−b23a)+(3d−bc3a)so3y(α)×3y(β)=[4αβ(c−b23a)2+2(α+β)(c−b23a)(3d−bc3a)+(3d−bc3a)2]Asα=c3aandβ=−2b3awehave3y(α)×3y(β)=4c3a(c−b23a)2−4b3a(c−b23a)(3d−bc3a)+(3d−bc3a)2>0or4c(3ac−b2)2−4b(3ac−b2)(9ad−bc)+3a(9ad−bc)2>0or3a(9ad−bc)2+4(3ac−b2)(3ac2−b2c−9abd+b2c)>0⇒3a(9ad−bc)2+4(3a)(3ac−b2)(c2−3bd)>0a[(9ad−bc)2−4(b2−3ac)(c2−3bd)]>0. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: given-the-polar-equation-r-a-2-sin2-show-the-tangents-at-the-poles-of-this-polar-equation-is-pi-4-3pi-4-5pi-4-7pi-4-Next Next post: Question-90100 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.