Menu Close

y-ax-3-bx-2-cx-d-then-prove-that-the-equation-y-0-has-only-one-real-root-if-a-9ad-bc-2-4-b-2-3ac-c-2-3bd-gt-0-provided-b-2-gt-3ac-




Question Number 24565 by ajfour last updated on 21/Nov/17
  y=ax^3 +bx^2 +cx+d , then  prove that the equation y=0  has only one real root if   a[(9ad−bc)^2 −4(b^2 −3ac)(c^2 −3bd)]      > 0     provided   b^2  > 3ac .
y=ax3+bx2+cx+d,thenprovethattheequationy=0hasonlyonerealrootifa[(9adbc)24(b23ac)(c23bd)]>0providedb2>3ac.
Answered by ajfour last updated on 21/Nov/17
Commented by ajfour last updated on 21/Nov/17
If the local minimum value  and the local maximum value,  both, are of the same sign, then,  i believe, there can be just one  real root of a cubic equation.      y=ax^3 +bx^2 +cx+d  ⇒  (dy/dx)=3ax^2 +2bx+c   let  at x= α, β     (dy/dx)=0  ⇒ 𝛂𝛃=(c/(3a))  and   (𝛂+𝛃)=−((2b)/(3a))  ⇒   3aα^2 +2bα+c =0  .....(i)          3aβ^( 2) +2bβ+c =0    .....(ii)  For one real root  y(𝛂)×y(𝛃) > 0  or  3y(𝛂)×3y(𝛃) > 0  3y(α)=  3aα^3 +3bα^2 +3cα+3d   subtracting α×(i) from this  3y(α)=b𝛂^2 +2c𝛂+3d           =(b/(3a))(3a𝛂^2 )+2c𝛂+3d  using (i) again:    3y(α)=−(b/(3a))(2bα+c)+2cα+3d            =2α(c−(b^2 /(3a)))+(3d−((bc)/(3a)))  so   3y(α)×3y(β) =      [4𝛂𝛃(c−(b^2 /(3a)))^2 +2(𝛂+𝛃)(c−(b^2 /(3a)))(3d−((bc)/(3a)))                               +(3d−((bc)/(3a)))^2 ]   As  α=(c/(3a))   and  β=−((2b)/(3a))   we have  3y(α)×3y(β)=     ((4c)/(3a))(c−(b^2 /(3a)))^2 −((4b)/(3a))(c−(b^2 /(3a)))(3d−((bc)/(3a)))                           +(3d−((bc)/(3a)))^2  > 0  or  4c(3ac−b^2 )^2 −4b(3ac−b^2 )(9ad−bc)                            +3a(9ad−bc)^2  > 0  or  3a(9ad−bc)^2 +4(3ac−b^2 )(3ac^2 −b^2 c                            −9abd+b^2 c) > 0  ⇒  3a(9ad−bc)^2 +4(3a)(3ac−b^2 )(c^2 −3bd)>0  a[(9ad−bc)^2 −4(b^2 −3ac)(c^2 −3bd)]>0 .
Ifthelocalminimumvalueandthelocalmaximumvalue,both,areofthesamesign,then,ibelieve,therecanbejustonerealrootofacubicequation.y=ax3+bx2+cx+ddydx=3ax2+2bx+cletatx=α,βdydx=0αβ=c3aand(α+β)=2b3a3aα2+2bα+c=0..(i)3aβ2+2bβ+c=0..(ii)Foronerealrooty(α)×y(β)>0or3y(α)×3y(β)>03y(α)=3aα3+3bα2+3cα+3dsubtractingα×(i)fromthis3y(α)=bα2+2cα+3d=b3a(3aα2)+2cα+3dusing(i)again:3y(α)=b3a(2bα+c)+2cα+3d=2α(cb23a)+(3dbc3a)so3y(α)×3y(β)=[4αβ(cb23a)2+2(α+β)(cb23a)(3dbc3a)+(3dbc3a)2]Asα=c3aandβ=2b3awehave3y(α)×3y(β)=4c3a(cb23a)24b3a(cb23a)(3dbc3a)+(3dbc3a)2>0or4c(3acb2)24b(3acb2)(9adbc)+3a(9adbc)2>0or3a(9adbc)2+4(3acb2)(3ac2b2c9abd+b2c)>03a(9adbc)2+4(3a)(3acb2)(c23bd)>0a[(9adbc)24(b23ac)(c23bd)]>0.

Leave a Reply

Your email address will not be published. Required fields are marked *