Menu Close

y-dy-dx-1-x-2-y-




Question Number 116053 by Study last updated on 30/Sep/20
y(dy/dx)=1+x^2         y=?
$${y}\frac{{dy}}{{dx}}=\mathrm{1}+{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:{y}=? \\ $$
Answered by Dwaipayan Shikari last updated on 30/Sep/20
y(dy/dx)=1+x^2   ∫ydy=∫1+x^2 dx  (y^2 /2)=x+(x^3 /3)+C  y=±(√(2x+((2x^3 )/3)+2C))
$$\mathrm{y}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{1}+\mathrm{x}^{\mathrm{2}} \\ $$$$\int\mathrm{ydy}=\int\mathrm{1}+\mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$$$\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{C} \\ $$$$\mathrm{y}=\pm\sqrt{\mathrm{2x}+\frac{\mathrm{2x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{2C}} \\ $$
Answered by Bird last updated on 30/Sep/20
yy^′  =1+x^(2 )  ⇒∫yy^′ dx =x+(x^3 /3) +c  ⇒(1/2)y^2  =x +(x^3 /3)+c ⇒  y^(2 ) =2x+((2x^3 )/3) +2c ⇒  y =+^− (√(2x+((2x^3 )/3)+λ))   (λ=2c)
$${yy}^{'} \:=\mathrm{1}+{x}^{\mathrm{2}\:} \:\Rightarrow\int{yy}^{'} {dx}\:={x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:+{c} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} \:={x}\:+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+{c}\:\Rightarrow \\ $$$${y}^{\mathrm{2}\:} =\mathrm{2}{x}+\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{3}}\:+\mathrm{2}{c}\:\Rightarrow \\ $$$${y}\:=\overset{−} {+}\sqrt{\mathrm{2}{x}+\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{3}}+\lambda}\:\:\:\left(\lambda=\mathrm{2}{c}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *