Menu Close

y-dy-dx-y-ay-for-a-some-constant-




Question Number 123342 by bemath last updated on 25/Nov/20
  ((y+(dy/dx))/y) = ay , for a some constant
$$\:\:\frac{{y}+\frac{{dy}}{{dx}}}{{y}}\:=\:{ay}\:,\:{for}\:{a}\:{some}\:{constant} \\ $$
Answered by liberty last updated on 25/Nov/20
⇒ y + (dy/dx) = ay^2  ; (dy/dx) = ay^2 −y   ⇒(dy/(y(ay−1))) = dx    ⇒ ∫ (a/(ay−1))−(1/y) = ∫ dx  ⇒ ℓn ∣((ay−1)/y) ∣ = x + k   ⇒ a−(1/y) = Ce^x  ; (1/y) = a−Ce^x   ⇒ y = (1/(a−Ce^x )) .
$$\Rightarrow\:{y}\:+\:\frac{{dy}}{{dx}}\:=\:{ay}^{\mathrm{2}} \:;\:\frac{{dy}}{{dx}}\:=\:{ay}^{\mathrm{2}} −{y} \\ $$$$\:\Rightarrow\frac{{dy}}{{y}\left({ay}−\mathrm{1}\right)}\:=\:{dx}\: \\ $$$$\:\Rightarrow\:\int\:\frac{{a}}{{ay}−\mathrm{1}}−\frac{\mathrm{1}}{{y}}\:=\:\int\:{dx} \\ $$$$\Rightarrow\:\ell{n}\:\mid\frac{{ay}−\mathrm{1}}{{y}}\:\mid\:=\:{x}\:+\:{k}\: \\ $$$$\Rightarrow\:{a}−\frac{\mathrm{1}}{{y}}\:=\:{Ce}^{{x}} \:;\:\frac{\mathrm{1}}{{y}}\:=\:{a}−{Ce}^{{x}} \\ $$$$\Rightarrow\:{y}\:=\:\frac{\mathrm{1}}{{a}−{Ce}^{{x}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *