Question Number 192338 by josemate19 last updated on 15/May/23
$${y}=\:\left(\frac{\left(\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+{h}\right)^{\mathrm{3}} −{x}^{\mathrm{3}} }{{h}}\right)\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\right)}{\int_{\mathrm{0}} ^{\:{x}} {lnt}\:{dt}}\right) \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}? \\ $$
Answered by aleks041103 last updated on 15/May/23
$$\underset{{h}\rightarrow\mathrm{0}} {{lim}}\frac{\left({x}+{h}\right)^{\mathrm{3}} −{x}^{\mathrm{3}} }{{h}}=\left({x}^{\mathrm{3}} \right)'=\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\:{x}} {t}^{{n}} {dt}=\int_{\mathrm{0}} ^{\:{x}} \left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{t}^{{n}} \right){dt}= \\ $$$$=\int_{\mathrm{0}} ^{\:{x}} \:\frac{\mathrm{1}}{\mathrm{1}−{t}}{dt}\:=\:\int_{\mathrm{1}−{x}} ^{\:\mathrm{1}} \frac{{dt}}{{t}}=−{ln}\left(\mathrm{1}−{x}\right) \\ $$$$\int_{\mathrm{0}} ^{\:{x}} {ln}\left({t}\right){dt}\:=\:\left({t}\:{ln}\left({t}\right)\right)_{\mathrm{0}} ^{{x}} −\int_{\mathrm{0}} ^{\:{x}} {td}\left({ln}\left({t}\right)\right)= \\ $$$$={xln}\left({x}\right)−{x} \\ $$$$\Rightarrow{y}=\frac{\mathrm{3}{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right)}{{x}\left(\mathrm{1}−{ln}\left({x}\right)\right)}=\frac{\mathrm{3}{xln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{ln}\left({x}\right)} \\ $$$${y}'=\frac{\left(−\frac{\mathrm{3}{x}}{\mathrm{1}−{x}}+\mathrm{3}{ln}\left(\mathrm{1}−{x}\right)\right)\left(\mathrm{1}−{ln}\left({x}\right)\right)+\mathrm{3}{ln}\left(\mathrm{1}−{x}\right)}{\left(\mathrm{1}−{ln}\left({x}\right)\right)^{\mathrm{2}} } \\ $$
Answered by mehdee42 last updated on 15/May/23
$$\left.{p}\mathrm{1}\right){lim}_{{h}\rightarrow\mathrm{0}} \frac{\left({x}+{h}\right)^{\mathrm{3}} −{x}^{\mathrm{3}} }{{h}}=\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\left.{p}\mathrm{2}\right)\underset{\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}=−{ln}\left(\mathrm{1}−{x}\right)\:\:\:\:\:\:\:\:{taylor}\:\:{expantion} \\ $$$$\left.{p}\mathrm{3}\right)\int_{\mathrm{0}} ^{{x}} {lntdt}={lim}_{{h}\rightarrow\mathrm{0}} \left[{tlnt}−{t}\right]\underset{{h}} {\overset{{x}} {\:}}={xlnx}−{x} \\ $$$$\Rightarrow{y}=\frac{−\mathrm{3}{xln}\left(\mathrm{1}−{x}\right)}{{lnx}\:−\mathrm{1}} \\ $$$$\Rightarrow{y}'=\frac{\left(−\mathrm{3}{ln}\left(\mathrm{1}−{x}\right)+\mathrm{3}{x}×\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)\left({lnx}\:−\mathrm{1}\right)+\mathrm{3}{ln}\left(\mathrm{1}−{x}\right)}{\left({lnx}\:−\mathrm{1}\right)^{\mathrm{2}} } \\ $$