Menu Close

y-log-2-log-3-log-5-x-y-




Question Number 63888 by Mikael last updated on 10/Jul/19
y = log_2 [log_3 (log_5 x)]  y� = ?
y=log2[log3(log5x)]y=?
Answered by Hope last updated on 10/Jul/19
y=log_2 [log_3 (u)] →u=log_5 x  x=5^u   →(dx/du)=5^u ln5=xln5  y=log_2 [v]→v=log_3 u  3^v =u  (du/dv)=3^v ln3=uln3=(log_5 x)ln3  y=log_2 v  v=2^y   (dv/dy)=2^y ln2=vln2=2^y ln2  now (dv/dy)×(du/dv)×(dx/du)=(2^y ln2)×(log_5 x ln3)×(xln5)  (dx/dy)=(ln2×ln3×ln5)(xlog_5 x)×(2^y )  (dx/dy)=(ln2×ln3×ln5)×(xln_5 x)×2^(log_2 (log_3 (log_5 x)))   (dy/dx)=(1/((ln2×ln3×ln5)))×(1/(xln_5 x))×(1/2^(log_2 (log_3 (log_5 x))) )  pls check
y=log2[log3(u)]u=log5xx=5udxdu=5uln5=xln5y=log2[v]v=log3u3v=ududv=3vln3=uln3=(log5x)ln3y=log2vv=2ydvdy=2yln2=vln2=2yln2nowdvdy×dudv×dxdu=(2yln2)×(log5xln3)×(xln5)dxdy=(ln2×ln3×ln5)(xlog5x)×(2y)dxdy=(ln2×ln3×ln5)×(xln5x)×2log2(log3(log5x))dydx=1(ln2×ln3×ln5)×1xln5x×12log2(log3(log5x))plscheck
Commented by Mikael last updated on 10/Jul/19
thank you Sir
thankyouSir
Answered by mr W last updated on 10/Jul/19
y′=(1/(ln 2×log_3  (log_5  x)))×(1/(ln 3×log_5  x))×(1/(ln 5×x))  y′=(1/(ln 2×ln 3×ln 5×[log_3  (log_5  x)][log_5  x]x))
y=1ln2×log3(log5x)×1ln3×log5x×1ln5×xy=1ln2×ln3×ln5×[log3(log5x)][log5x]x
Commented by Mikael last updated on 10/Jul/19
Thank you Sir.
ThankyouSir.

Leave a Reply

Your email address will not be published. Required fields are marked *