Menu Close

y-log-x-1-x-2-show-that-x-x-1-2-y-2-x-1-2-y-1-2-




Question Number 52820 by 33 last updated on 13/Jan/19
y = log{(√x) +(1/( (√x)   ))}^2                      show that  x(x+1)^2 y_2  + (x+1)^2 y_1  = 2
y=log{x+1x}2showthatx(x+1)2y2+(x+1)2y1=2
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19
y=ln(x+2+(1/x))=ln(((x^2 +2x+1)/x))  y=2ln(x+1)−lnx  y_1 =(2/(x+1))−(1/x)=((2x−x−1)/(x^2 +x))=((x−1)/(x^2 +x))  y_2 =((x^2 +x(1)−(x−1)(2x+1))/(x^2 (x+1)^2 ))  y_2 =((x^2 +x−2x^2 −x+2x+1)/(x^2 (x+1)^2 ))=((−x^2 +2x+1)/(x^2 (x+1)^2 ))  x(x+1)^2 y_2 =−x+2+(1/x)  (x+1)^2 y_1 =(x+1)(x+1)×((x−1)/(x(x+1)))=((x^2 −1)/x)=x−(1/x)  so x(x+1)^2 y_2 +(x+1)^2 y_1   =−x+2+(1/x)+x−(1/x)  =2 hence proved
y=ln(x+2+1x)=ln(x2+2x+1x)y=2ln(x+1)lnxy1=2x+11x=2xx1x2+x=x1x2+xy2=x2+x(1)(x1)(2x+1)x2(x+1)2y2=x2+x2x2x+2x+1x2(x+1)2=x2+2x+1x2(x+1)2x(x+1)2y2=x+2+1x(x+1)2y1=(x+1)(x+1)×x1x(x+1)=x21x=x1xsox(x+1)2y2+(x+1)2y1=x+2+1x+x1x=2henceproved
Commented by 33 last updated on 14/Jan/19
thank you so much
thankyousomuch
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *