Menu Close

y-sec-1-e-x-4-Find-dy-




Question Number 124956 by liberty last updated on 07/Dec/20
 y = sec^(−1) (e^x^4  ) . Find dy =?
$$\:{y}\:=\:\mathrm{sec}^{−\mathrm{1}} \left({e}^{{x}^{\mathrm{4}} } \right)\:.\:{Find}\:{dy}\:=? \\ $$
Answered by bemath last updated on 07/Dec/20
 ⇒ e^x^4   = sec y or cos y = (1/e^x^4  )  cos y = e^(−x^4 )   −sin y dy = −4x^3  e^(−x^4 )  dx   dy = ((4x^3  e^(−x^4 ) )/(sin y)) dx = 4x^3  e^(−x^4 )  (√(1−e^(−2x^4 ) )) dx    dy = ((4x^3 )/(e^x^4   sin (sec^(−1) (e^x^4  )))) dx
$$\:\Rightarrow\:{e}^{{x}^{\mathrm{4}} } \:=\:\mathrm{sec}\:{y}\:{or}\:\mathrm{cos}\:{y}\:=\:\frac{\mathrm{1}}{{e}^{{x}^{\mathrm{4}} } } \\ $$$$\mathrm{cos}\:{y}\:=\:{e}^{−{x}^{\mathrm{4}} } \\ $$$$−\mathrm{sin}\:{y}\:{dy}\:=\:−\mathrm{4}{x}^{\mathrm{3}} \:{e}^{−{x}^{\mathrm{4}} } \:{dx} \\ $$$$\:{dy}\:=\:\frac{\mathrm{4}{x}^{\mathrm{3}} \:{e}^{−{x}^{\mathrm{4}} } }{\mathrm{sin}\:{y}}\:{dx}\:=\:\mathrm{4}{x}^{\mathrm{3}} \:{e}^{−{x}^{\mathrm{4}} } \:\sqrt{\mathrm{1}−{e}^{−\mathrm{2}{x}^{\mathrm{4}} } }\:{dx}\: \\ $$$$\:{dy}\:=\:\frac{\mathrm{4}{x}^{\mathrm{3}} }{{e}^{{x}^{\mathrm{4}} } \:\mathrm{sin}\:\left(\mathrm{sec}^{−\mathrm{1}} \left({e}^{{x}^{\mathrm{4}} } \right)\right)}\:{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 07/Dec/20
secy=e^x^4    ⇒−log(cosy)=x^4   ⇒((siny)/(cosy)).(dy/dx)=4x^3 ⇒(dy/dx)=4x^3 coty⇒4x^3 cot(sec^(−1) (e^x^4  ))
$${secy}={e}^{{x}^{\mathrm{4}} } \\ $$$$\Rightarrow−{log}\left({cosy}\right)={x}^{\mathrm{4}} \\ $$$$\Rightarrow\frac{{siny}}{{cosy}}.\frac{{dy}}{{dx}}=\mathrm{4}{x}^{\mathrm{3}} \Rightarrow\frac{{dy}}{{dx}}=\mathrm{4}{x}^{\mathrm{3}} {coty}\Rightarrow\mathrm{4}{x}^{\mathrm{3}} {cot}\left({sec}^{−\mathrm{1}} \left({e}^{{x}^{\mathrm{4}} } \right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *