Question Number 130918 by bramlexs22 last updated on 30/Jan/21
$$\:\begin{cases}{{y}=\mathrm{sin}\:\theta−\mathrm{cos}\:^{\mathrm{3}} \theta}\\{{x}=\mathrm{cos}\:\theta−\mathrm{sin}\:^{\mathrm{3}} \theta}\end{cases} \\ $$$$\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=? \\ $$
Answered by benjo_mathlover last updated on 30/Jan/21
$$\:\:\begin{cases}{\frac{\mathrm{dy}}{\mathrm{d}\theta}=\mathrm{cos}\:\theta+\mathrm{3cos}\:^{\mathrm{2}} \theta\:\mathrm{sin}\:\theta}\\{\frac{\mathrm{dx}}{\mathrm{d}\theta}\:=\:−\mathrm{sin}\:\theta−\mathrm{3sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:\theta}\end{cases} \\ $$$$\:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{dy}}{\mathrm{d}\theta}\:.\:\frac{\mathrm{d}\theta}{\mathrm{dx}}\:=\:\frac{\mathrm{cos}\:\theta+\mathrm{3cos}\:^{\mathrm{2}} \theta\:\mathrm{sin}\:\theta}{−\mathrm{sin}\:\theta−\mathrm{3sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:\theta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{cos}\:\theta\left(\mathrm{1}+\mathrm{3cos}\:\theta\mathrm{sin}\:\theta\right)}{−\mathrm{sin}\:\theta\left(\mathrm{1}+\mathrm{3cos}\:\theta\:\mathrm{sin}\:\theta\right)}=−\mathrm{cot}\:\theta \\ $$$$\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{d}}{\mathrm{d}\theta}\left(−\mathrm{cot}\:\theta\right).\:\frac{\mathrm{d}\theta}{\mathrm{dx}}\:=\:\mathrm{csc}^{\mathrm{2}} \theta\:.\left(\frac{\mathrm{1}}{−\mathrm{sin}\:\theta−\mathrm{3sin}\:^{\mathrm{2}} \theta\:\mathrm{cos}\:\theta}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{3}} \theta\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}\theta\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\frac{\mathrm{2}}{\mathrm{sin}\:^{\mathrm{3}} \theta\left(\mathrm{2}+\mathrm{3sin}\:\mathrm{2}\theta\right)} \\ $$