Question Number 86142 by jagoll last updated on 27/Mar/20
$$\mathrm{y}'\:.\mathrm{sin}\:\mathrm{t}\:\mathrm{cos}\:\mathrm{t}\:=\:\mathrm{y}\:+\:\mathrm{sin}\:^{\mathrm{3}} \mathrm{t}\: \\ $$$$\mathrm{y}\left(\frac{\pi}{\mathrm{4}}\right)\:=\:\mathrm{0}\: \\ $$
Answered by Kunal12588 last updated on 27/Mar/20
$$\frac{{dy}}{{dt}}=\frac{{y}}{\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}}+\mathrm{sin}\:{t}\:\mathrm{tan}\:{t} \\ $$$$\Rightarrow\frac{{dy}}{{dt}}+\left(−\frac{\mathrm{1}}{\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}}\right){y}=\mathrm{sin}\:{t}\:\mathrm{tan}\:{t} \\ $$$${P}\:=\:−\frac{\mathrm{1}}{\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}}\:;\:{Q}\:=\:\mathrm{sin}\:{t}\:\mathrm{tan}\:{t} \\ $$$${I}.{F}\:=\:{e}^{\int{P}\:{dt}} \:=\:{e}^{−\int\frac{{dt}}{\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}}} \:=\:{e}^{−\int\:\frac{\mathrm{sin}^{\mathrm{2}} \:{t}+\mathrm{cos}^{\mathrm{2}} \:{t}}{\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}}{dt}} \\ $$$$={e}^{−\int\mathrm{tan}\:{t}\:{dt}\:−\int\mathrm{cot}\:{t}\:{dt}\:} ={e}^{−\mathrm{ln}\:\mid\mathrm{sec}\:{t}\mid−\mathrm{ln}\mid\mathrm{sin}\:{t}\mid\:} \\ $$$$={e}^{−\mathrm{ln}\:\mid\mathrm{tan}\:{t}\mid} ={e}^{\mathrm{ln}\:\mid\mathrm{cot}\:{t}\mid} =\mathrm{cot}\:{t} \\ $$$${y}\left({I}.{F}\right)=\int{Q}\left({I}.{F}\right)\:{dt} \\ $$$$\Rightarrow{y}\:\mathrm{cot}\:{t}\:=\:\int\mathrm{sin}\:{t}\:{dt} \\ $$$$\Rightarrow{y}\:\mathrm{cot}\:{t}\:=\:−\mathrm{cos}\:{t}\:+\:{a} \\ $$$$\Rightarrow{y}\:=\:−\mathrm{sin}\:{t}\:+\:{a}\:\mathrm{tan}\:{t}\:\rightarrow\:{general}\:{solution} \\ $$$${If}\:{question}\:{means}\:{when}\:{t}\:=\:\frac{\pi}{\mathrm{4}},\:{y}=\mathrm{0}\:.\:{Then}\:, \\ $$$$\mathrm{0}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+{a} \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\therefore\:{y}\:=\:−\mathrm{sin}\:{t}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{tan}\:{t}\:\rightarrow\:{particular}\:{solution} \\ $$
Commented by jagoll last updated on 27/Mar/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by TANMAY PANACEA. last updated on 27/Mar/20
$$\frac{{dy}}{{dt}}+\frac{−{y}}{{sintcost}}=\frac{{sin}^{\mathrm{2}} {t}}{{cost}} \\ $$$${e}^{\int\frac{{dt}}{−{sintcost}}} \\ $$$${e}^{\int−\mathrm{2}{cosec}\mathrm{2}{t}\:{dt}} \\ $$$$\int{cosec}\mathrm{2}{t}=\frac{{lntant}}{\mathrm{2}} \\ $$$${e}^{\int−\mathrm{2}{cosec}\mathrm{2}{t}\:} {dt}={e}^{−\mathrm{2}×\frac{{lntant}}{\mathrm{2}}} =\frac{\mathrm{1}}{{tant}}={cott} \\ $$$${cott}×\frac{{dy}}{{dt}}+\frac{−{y}×{cott}}{{sint}×{cost}}=\frac{{sin}^{\mathrm{2}} {t}}{{cost}}×{cott} \\ $$$${cott}×\frac{{dy}}{{dt}}+{y}×\left(−{cosec}^{\mathrm{2}} {t}\right)={sint} \\ $$$$\frac{{d}}{{dt}}\left({y}.{cott}\right)={sint} \\ $$$${ycott}=−{cost}+{c} \\ $$$$\mathrm{0}×\mathrm{1}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+{c} \\ $$$${ycott}=−{cost}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$
Commented by jagoll last updated on 27/Mar/20
$$\mathrm{what}\:\mathrm{is}\:\mathrm{cott}\:\mathrm{sir}? \\ $$
Commented by TANMAY PANACEA. last updated on 27/Mar/20
$${cot}\theta\:\rightarrow\:\:\:{cot}\left({t}\right) \\ $$
Commented by jagoll last updated on 27/Mar/20
$$\mathrm{ol}\:\mathrm{it}\:\mathrm{cot}\:\left(\mathrm{t}\right)\:..\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$