Menu Close

y-x-2-1-At-Q-y-y-x-x-2-y-y-x-2-2x-x-x-2-2-Subtracting-1-from-2-y-y-x-2-2x-x-x-2-y-x-2-y-2x-x-x-2-Divide-through-by-




Question Number 127731 by Tosin Okunowo last updated on 01/Jan/21
y = x^2  ........[1]  At Q, y + δy = (x+δx)^2   y+δy = x^2 +2x.δx+(δx)^2 .....[2]  Subtracting [1] from [2]  y+δy= x^2 +2x.δx+(δx)^2   y         = x^2   −−−−−−−−−−−−−−−  δy = 2x.δx+(δx)^2   Divide through by δx  ((δy)/(δx)) = 2x +δx  If δx→0,((δy)/(δx))→(dy/dx) and ∴ (dy/dx)=2x  ∴ If y = x^2 ,(dy/dx) = 2x.
y=x2..[1]AtQ,y+δy=(x+δx)2y+δy=x2+2x.δx+(δx)2..[2]Subtracting[1]from[2]y+δy=x2+2x.δx+(δx)2y=x2δy=2x.δx+(δx)2Dividethroughbyδxδyδx=2x+δxIfδx0,δyδxdydxanddydx=2xIfy=x2,dydx=2x.

Leave a Reply

Your email address will not be published. Required fields are marked *