Menu Close

y-x-2-2-y-x-x-0-x-1-find-the-area-of-the-figure-bounded-by-lines-




Question Number 169852 by Shrinava last updated on 10/May/22
y = x^2  + 2  y = - x  x = 0  x = 1  find the area of the figure bounded by  lines
$$\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2} \\ $$$$\mathrm{y}\:=\:-\:\mathrm{x} \\ $$$$\mathrm{x}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:=\:\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{bounded}\:\mathrm{by} \\ $$$$\mathrm{lines} \\ $$
Answered by mahdipoor last updated on 11/May/22
∫_0 ^( 1) (x^2 +2−(−x))dx=[(x^3 /3)+2x+(x^2 /2)]_0 ^1 =((17)/6)
$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({x}^{\mathrm{2}} +\mathrm{2}−\left(−{x}\right)\right){dx}=\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{2}{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{17}}{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *