Menu Close

y-x-2-y-2-dx-x-dy-




Question Number 90262 by jagoll last updated on 22/Apr/20
(y+(√(x^2 +y^2 ))) dx = x dy
$$\left(\mathrm{y}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\right)\:\mathrm{dx}\:=\:\mathrm{x}\:\mathrm{dy}\: \\ $$
Commented by john santu last updated on 22/Apr/20
((y/x)+(√(1+((y/x))^2 ))) dx = dy   [ y = px ⇒dy = p dx + x dp ]   (p +(√(1+p^2 ))) dx = p dx + x dp   (√(1+p^2  )) dx = x dp   (dx/x) = (dp/( (√(1+p^2 ))))   let I = ∫ (dp/( (√(1+p^2 )))) , [ p = tan u ]  I = ∫ ((sec^2 u du)/(sec u)) = ln ∣sec u+tan u∣  ⇒ ln∣Cx∣ = ln∣ sec u+tan u∣  Cx = p+(√(1+p^2 ))  Cx = ((y+(√(x^2 +y^2 )))/x)    Cx^2  = y +(√(x^2 +y^2 ))
$$\left(\frac{{y}}{{x}}+\sqrt{\mathrm{1}+\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} }\right)\:{dx}\:=\:{dy}\: \\ $$$$\left[\:{y}\:=\:{px}\:\Rightarrow{dy}\:=\:{p}\:{dx}\:+\:{x}\:{dp}\:\right]\: \\ $$$$\left({p}\:+\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }\right)\:{dx}\:=\:{p}\:{dx}\:+\:{x}\:{dp}\: \\ $$$$\sqrt{\mathrm{1}+{p}^{\mathrm{2}} \:}\:{dx}\:=\:{x}\:{dp}\: \\ $$$$\frac{{dx}}{{x}}\:=\:\frac{{dp}}{\:\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}\: \\ $$$${let}\:{I}\:=\:\int\:\frac{{dp}}{\:\sqrt{\mathrm{1}+{p}^{\mathrm{2}} }}\:,\:\left[\:{p}\:=\:\mathrm{tan}\:{u}\:\right] \\ $$$${I}\:=\:\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} {u}\:{du}}{\mathrm{sec}\:{u}}\:=\:\mathrm{ln}\:\mid\mathrm{sec}\:{u}+\mathrm{tan}\:{u}\mid \\ $$$$\Rightarrow\:\mathrm{ln}\mid{Cx}\mid\:=\:\mathrm{ln}\mid\:\mathrm{sec}\:{u}+\mathrm{tan}\:{u}\mid \\ $$$${Cx}\:=\:{p}+\sqrt{\mathrm{1}+{p}^{\mathrm{2}} } \\ $$$${Cx}\:=\:\frac{{y}+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{{x}}\:\: \\ $$$${Cx}^{\mathrm{2}} \:=\:{y}\:+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\: \\ $$$$ \\ $$
Commented by jagoll last updated on 22/Apr/20
waw..thank you both
$$\mathrm{waw}..\mathrm{thank}\:\mathrm{you}\:\mathrm{both} \\ $$
Answered by ajfour last updated on 22/Apr/20
(y/x)+(√(1+((y/x))^2 ))=(dy/dx)  let  y=tx   ⇒   (dy/dx)=t+x(dt/dx)  x(dt/dx)=(√(1+t^2 ))  ⇒  ∫ (dt/( (√(1+t^2 ))))=∫(dx/x)      ln ∣t+(√(1+t^2 ))∣=ln ∣cx∣  ⇒   y+(√(x^2 +y^2 ))=cx^2  .
$$\frac{{y}}{{x}}+\sqrt{\mathrm{1}+\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} }=\frac{{dy}}{{dx}} \\ $$$${let}\:\:{y}={tx}\:\:\:\Rightarrow\:\:\:\frac{{dy}}{{dx}}={t}+{x}\frac{{dt}}{{dx}} \\ $$$${x}\frac{{dt}}{{dx}}=\sqrt{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\int\:\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}=\int\frac{{dx}}{{x}} \\ $$$$\:\:\:\:\mathrm{ln}\:\mid{t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\mid=\mathrm{ln}\:\mid{cx}\mid \\ $$$$\Rightarrow\:\:\:{y}+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }={cx}^{\mathrm{2}} \:. \\ $$
Answered by TANMAY PANACEA. last updated on 22/Apr/20
xdy−ydx=(√(x^2 +y^2 )) dx  ((xdy−ydx)/x^2 )=(√(1+((y/x))^2 )) .(dx/x)  ((d((y/x)))/( (√(1+((y/x))^2 )) ))=∫(dx/x)  ln((y/x)+(√(1+((y/x))^2 )) )=lnx+lnC  ((y+(√(x^2 +y^2 )))/x)=xC
$${xdy}−{ydx}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:{dx} \\ $$$$\frac{{xdy}−{ydx}}{{x}^{\mathrm{2}} }=\sqrt{\mathrm{1}+\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} }\:.\frac{{dx}}{{x}} \\ $$$$\frac{{d}\left(\frac{{y}}{{x}}\right)}{\:\sqrt{\mathrm{1}+\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} }\:}=\int\frac{{dx}}{{x}} \\ $$$${ln}\left(\frac{{y}}{{x}}+\sqrt{\mathrm{1}+\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} }\:\right)={lnx}+{lnC} \\ $$$$\frac{{y}+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{{x}}={xC} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *