Question Number 83131 by 09658867628 last updated on 28/Feb/20
$${y}=\boldsymbol{{x}}^{\mathrm{4ln}\:\boldsymbol{{x}}} \\ $$
Commented by mr W last updated on 28/Feb/20
$${dear}\:{sir}: \\ $$$${please}\:{stop}\:{posting}\:{the}\:{same}\:{questions} \\ $$$${more}\:{times}!\:{if}\:{it}\:{occurs}\:{by}\:{mistake}, \\ $$$${you}\:{can}\:{delete}\:{the}\:{posts}\:{which}\:{are} \\ $$$${too}\:{much} \\ $$$$ \\ $$$${besides}\:{please}\:{make}\:{clear}\:{what}\:{you} \\ $$$${request}\:{with}\:{your}\:{questions}! \\ $$
Commented by mr W last updated on 28/Feb/20
$${sir}: \\ $$$${you}\:{are}\:{still}\:{posting}\:{a}\:{lot}\:{of}\:“{questions}'' \\ $$$${without}\:{telling}\:{what}\:{your}\:{question} \\ $$$${is}.\:{this}\:{is}\:{boring}\:{and}\:{also}\:\:{respectless} \\ $$$${to}\:{other}\:{users}.\:{can}\:{you}\:{please}\:{refrain} \\ $$$${this}?\:{thank}\:{you}! \\ $$
Commented by 20092104 last updated on 04/Mar/20
$${y}={x}^{\mathrm{4ln}\:{x}} \\ $$$$\mathrm{ln}\:{y}=\mathrm{4ln}\:{x}\mathrm{ln}\:{x} \\ $$$$\mathrm{ln}\:{y}=\mathrm{4}\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \\ $$$$\frac{{y}'}{{y}}=\mathrm{4}\centerdot\mathrm{2ln}\:{x}\centerdot\frac{\mathrm{1}}{{x}} \\ $$$${y}'={x}^{\mathrm{4ln}\:{x}} \frac{\mathrm{8ln}\:{x}}{{x}} \\ $$