Menu Close

y-x-sinx-find-y-




Question Number 162280 by MathsFan last updated on 28/Dec/21
y=x^(sinx)   find  y′
$${y}={x}^{{sinx}} \\ $$$${find}\:\:{y}' \\ $$
Answered by Ar Brandon last updated on 28/Dec/21
y=x^(sinx)   lny=sinxlnx  (1/y)∙(dy/dx)=((sinx)/x)+cosxlnx  ⇒(dy/dx)=x^(sinx) (((sinx)/x)+cosxlnx)
$${y}={x}^{\mathrm{sin}{x}} \\ $$$$\mathrm{ln}{y}=\mathrm{sin}{x}\mathrm{ln}{x} \\ $$$$\frac{\mathrm{1}}{{y}}\centerdot\frac{{dy}}{{dx}}=\frac{\mathrm{sin}{x}}{{x}}+\mathrm{cos}{x}\mathrm{ln}{x} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}={x}^{\mathrm{sin}{x}} \left(\frac{\mathrm{sin}{x}}{{x}}+\mathrm{cos}{x}\mathrm{ln}{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *