Menu Close

y-x-x-y-




Question Number 94424 by Abdulrahman last updated on 18/May/20
y=x^x   y^′ =?
$$\mathrm{y}=\mathrm{x}^{\mathrm{x}} \\ $$$$\mathrm{y}^{'} =? \\ $$
Commented by Tony Lin last updated on 18/May/20
y^′ =e^(xlnx) (lnx+1)     =x^x (lnx+1)
$${y}^{'} ={e}^{{xlnx}} \left({lnx}+\mathrm{1}\right) \\ $$$$\:\:\:={x}^{{x}} \left({lnx}+\mathrm{1}\right) \\ $$
Commented by PRITHWISH SEN 2 last updated on 18/May/20
y^′ =x^x (lnx+1)
$$\mathrm{y}^{'} =\mathrm{x}^{\mathrm{x}} \left(\mathrm{lnx}+\mathrm{1}\right) \\ $$
Commented by Abdulrahman last updated on 18/May/20
thanks
$$\mathrm{thanks} \\ $$
Commented by Abdulrahman last updated on 18/May/20
thankx
$$\mathrm{thankx} \\ $$
Answered by prakash jain last updated on 18/May/20
ln y=xln x  (1/y)y′=ln x+x×(1/x)=1+ln x)  y′=y(1+ln x)=x^x (1+ln x)
$$\mathrm{ln}\:{y}={x}\mathrm{ln}\:{x} \\ $$$$\left.\frac{\mathrm{1}}{{y}}{y}'=\mathrm{ln}\:{x}+{x}×\frac{\mathrm{1}}{{x}}=\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$$${y}'={y}\left(\mathrm{1}+\mathrm{ln}\:{x}\right)={x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$
Commented by Abdulrahman last updated on 18/May/20
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *