Menu Close

y-xy-2-dx-x-x-2-y-2-dy-0-




Question Number 93312 by john santu last updated on 12/May/20
(y−xy^2 )dx+(x+x^2 y^2 )dy = 0
$$\left(\mathrm{y}−\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \right)\mathrm{dy}\:=\:\mathrm{0}\: \\ $$
Answered by i jagooll last updated on 12/May/20
ydx+xdy −(xy^2 dx−x^2 y^2 dy)=0  ydx+xdy = xy^2 dx−x^2 y^2 dy  d(xy) = (xy)^2  ((dx/x)−dy)  ((d(xy))/((xy)^2 )) = (dx/x)−dy   ∫ ((d(xy))/((xy)^2 )) = ln (x) −y +c  (1/(xy)) −y+ln (x)=C  1−xy^2 +xy ln(x) = Cxy
$$\mathrm{ydx}+\mathrm{xdy}\:−\left(\mathrm{xy}^{\mathrm{2}} \mathrm{dx}−\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \mathrm{dy}\right)=\mathrm{0} \\ $$$$\mathrm{ydx}+\mathrm{xdy}\:=\:\mathrm{xy}^{\mathrm{2}} \mathrm{dx}−\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \mathrm{dy} \\ $$$$\mathrm{d}\left(\mathrm{xy}\right)\:=\:\left(\mathrm{xy}\right)^{\mathrm{2}} \:\left(\frac{\mathrm{dx}}{\mathrm{x}}−\mathrm{dy}\right) \\ $$$$\frac{\mathrm{d}\left(\mathrm{xy}\right)}{\left(\mathrm{xy}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{dx}}{\mathrm{x}}−\mathrm{dy}\: \\ $$$$\int\:\frac{\mathrm{d}\left(\mathrm{xy}\right)}{\left(\mathrm{xy}\right)^{\mathrm{2}} }\:=\:\mathrm{ln}\:\left(\mathrm{x}\right)\:−\mathrm{y}\:+\mathrm{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{xy}}\:−\mathrm{y}+\mathrm{ln}\:\left(\mathrm{x}\right)=\mathrm{C} \\ $$$$\mathrm{1}−\mathrm{xy}^{\mathrm{2}} +\mathrm{xy}\:\mathrm{ln}\left(\mathrm{x}\right)\:=\:\mathrm{Cxy} \\ $$
Commented by john santu last updated on 12/May/20
cccooolll man ....
$$\mathrm{cccooolll}\:\mathrm{man}\:…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *