Menu Close

y-y-cos-x-1-2y-2-trouve-la-solution-de-lequation-differentielle-




Question Number 154846 by SANOGO last updated on 22/Sep/21
y′=((y cos(x))/(1+2y^2 ))  trouve la solution de lequation differentielle
$${y}'=\frac{{y}\:{cos}\left({x}\right)}{\mathrm{1}+\mathrm{2}{y}^{\mathrm{2}} } \\ $$$${trouve}\:{la}\:{solution}\:{de}\:{lequation}\:{differentielle} \\ $$
Commented by tabata last updated on 22/Sep/21
(dy/dx) = (y/(1+2y^2 )) cos(x)      ((1 + 2y^2 )/y) dy = cos(x) dx    ln∣ y ∣ + y^2  = sin(x) + c    ∴ y^2  + ln ∣ y ∣ − sin(x) = c     ⟨ M . T  ⟩
$$\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}\:=\:\frac{\boldsymbol{{y}}}{\mathrm{1}+\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} }\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\: \\ $$$$ \\ $$$$\:\frac{\mathrm{1}\:+\:\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} }{\boldsymbol{{y}}}\:\boldsymbol{{dy}}\:=\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}} \\ $$$$ \\ $$$$\boldsymbol{{ln}}\mid\:\boldsymbol{{y}}\:\mid\:+\:\boldsymbol{{y}}^{\mathrm{2}} \:=\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:+\:\boldsymbol{{c}} \\ $$$$ \\ $$$$\therefore\:\boldsymbol{{y}}^{\mathrm{2}} \:+\:\boldsymbol{{ln}}\:\mid\:\boldsymbol{{y}}\:\mid\:−\:\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\:=\:\boldsymbol{{c}}\: \\ $$$$ \\ $$$$\langle\:\boldsymbol{{M}}\:.\:\boldsymbol{{T}}\:\:\rangle \\ $$
Commented by SANOGO last updated on 22/Sep/21
merci bien
$${merci}\:{bien}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *