y-y-e-x-e-x-e-x- Tinku Tara June 4, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 103014 by bobhans last updated on 12/Jul/20 y″−y=exex+e−x. Answered by bobhans last updated on 12/Jul/20 thecharacteristicequationofthehomogenousequationisγ2−1=0;γ=±1yh=C1ex+C2e−xsayy1(x)=ex→y1′=exy2(x)=e−x→y2′=−e−xWronskianW(y1,y2)=|y1y2y1′y2′|=|exe−xex−e−x|=−2≠0I1=∫ex(exex+e−x)W(y1,y2)dx=−12∫e2xex+e−xdx=−12ex+12tan−1(ex)I2=∫e−x(exex+e−x)−2dx=−12∫dxex+e−x=−12tan−1(ex)yp=−exI2+e−xI1=12extan−1(ex)−12+12e−xtan−1(ex)completesolutiony=C1ex+C2e−x+12(ex+e−x)tan−1(ex)−12 Commented by bramlex last updated on 12/Jul/20 colljoss Answered by mathmax by abdo last updated on 12/Jul/20 y″−y=exex+e−x(he)→y″−y=0→r2−1=0→r=+−1⇒yh=aex+be−x=au1+bu2W(u1,u2)=|exe−xex−e−x|=−2≠0W1=|oe−xexex+e−x−e−x|=−1ex+e−xW2=|ex0exexex+e−x|=e2xex+e−xv1=∫W1Wdx=∫dx2(ex+e−x)=ex=t12∫dtt(t+t−1)=12∫dtt2+1=12arctan(t)=12arctan(ex)v2=∫W2Wdx=−∫e2x2(ex+e−x)dx=ex=t−12∫t2t(t+t−1)dt=−12∫tt+t−1dt=−12∫t2t2+1dx=−12∫t2+1−1t2+1dt=−12t+12arctan(t)=−ex2+12arctan(ex)⇒yp=u1v1+u2v2=ex(12arctan(ex))+e−x(−ex2+12arctan(ex))=ex2arctan(ex)−12+e−x2arctan(ex)=ch(x)arctan(ex)−12thegeneralsolutionisy=yh+yp=aex+be−x+ch(x)arctan(ex)−12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-168550Next Next post: Resolve-x-2-2-y-3-x-2-y-y-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.