Question Number 93707 by i jagooll last updated on 14/May/20
$$\mathrm{y}\:\mathrm{y}''\:=\:\left(\mathrm{y}'\right)^{\mathrm{2}} \: \\ $$
Commented by i jagooll last updated on 14/May/20
cool man
Commented by john santu last updated on 14/May/20
$$\mathrm{let}\:\mathrm{v}\left(\mathrm{y}\right)\:=\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$$$\Rightarrow\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{v}\left(\mathrm{y}\right)\right)=\:\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}.\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$$$\mathrm{v}\left(\mathrm{y}\right)\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}\:=\:\mathrm{v}\left(\mathrm{y}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{solve}\:\mathrm{yv}\left(\mathrm{y}\right)\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}=\mathrm{v}\left(\mathrm{y}\right)^{\mathrm{2}} \\ $$$$\mathrm{factor}\:−\mathrm{v}\left(\mathrm{y}\right)\left\{−\mathrm{y}\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}+\mathrm{v}\left(\mathrm{y}\right)\right\}=\mathrm{0} \\ $$$$\mathrm{v}\left(\mathrm{y}\right)\left\{−\mathrm{y}\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}+\mathrm{v}\left(\mathrm{y}\right)\right\}=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{v}\left(\mathrm{y}\right)=\mathrm{0}}\\{\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}=\frac{\mathrm{v}\left(\mathrm{y}\right)}{\mathrm{y}}}\end{cases} \\ $$$$\mathrm{for}\:\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{dy}}=\frac{\mathrm{v}\left(\mathrm{y}\right)}{\mathrm{y}} \\ $$$$\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{v}\left(\mathrm{y}\right)}\:=\:\frac{\mathrm{dy}}{\mathrm{y}}\:\Rightarrow\int\:\frac{\mathrm{d}\left(\mathrm{v}\left(\mathrm{y}\right)\right)}{\mathrm{v}\left(\mathrm{y}\right)}\:=\:\int\:\frac{\mathrm{dy}}{\mathrm{y}} \\ $$$$\mathrm{ln}\left(\mathrm{v}\left(\mathrm{y}\right)\right)\:=\:\mathrm{ln}\left(\mathrm{y}\right)\:+\:\mathrm{c}_{\mathrm{1}} \\ $$$$\mathrm{v}\left(\mathrm{y}\right)\:=\:\mathrm{Cy}\:\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{Cy} \\ $$$$\frac{\mathrm{dy}}{\mathrm{y}}\:=\:\mathrm{Cx}\:\Rightarrow\:\mathrm{ln}\:\mathrm{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Cx}^{\mathrm{2}} +\mathrm{c}_{\mathrm{2}} \\ $$$$\mathrm{y}\:=\:\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Cx}^{\mathrm{2}} +\mathrm{c}_{\mathrm{2}} } \:.\: \\ $$$$\mathrm{for}\:\mathrm{v}\left(\mathrm{y}\right)\:=\:\mathrm{0}\:\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\mathrm{0} \\ $$$$\mathrm{y}\:=\:\mathrm{c}_{\mathrm{3}\:} \Rightarrow\begin{cases}{\mathrm{y}=\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Cx}^{\mathrm{2}} +\mathrm{c}_{\mathrm{2}} } }\\{\mathrm{y}=\mathrm{c}_{\mathrm{3}} \:}\end{cases} \\ $$$$ \\ $$