Menu Close

ydx-xdy-1-x-2-y-2-xdx-0-




Question Number 100184 by bobhans last updated on 25/Jun/20
((ydx + xdy)/(1−x^2 y^2 )) + xdx = 0
ydx+xdy1x2y2+xdx=0
Answered by maths mind last updated on 26/Jun/20
u=xy⇒du=ydx+xdy  ⇔(du/(1−u^2 ))+xdx=0  ⇒((ln(((1+u)/(1−u))))/2)=−(x^2 /2)+c  ⇒((1+u)/(1−u))=ke^(−x^2 )   ⇒u=((ke^(−x^2 ) −1)/(1+ke^(−x^2 ) ))  y=(1/x)(((ke^(−x^2 ) −1)/(1+ke^(−x^2 ) )))
u=xydu=ydx+xdydu1u2+xdx=0ln(1+u1u)2=x22+c1+u1u=kex2u=kex211+kex2y=1x(kex211+kex2)

Leave a Reply

Your email address will not be published. Required fields are marked *