Menu Close

yy-y-2-e-ax-find-genral-solution-




Question Number 126791 by BHOOPENDRA last updated on 24/Dec/20
yy′′−(y′)^2 =e^(ax )  find genral solution?
yy(y)2=eaxfindgenralsolution?
Commented by BHOOPENDRA last updated on 24/Dec/20
help me out this?
helpmeoutthis?
Answered by Olaf last updated on 26/Dec/20
yy′′−y′^2  = e^(ax)  (1)  Let y = e^((1/2)ax) u (2)  y′ = e^((1/2)ax) (u′+(1/2)au)  y′′ = e^((1/2)ax) (u′′+au′+(1/4)a^2 u)  (1) : (u′′+au′+(1/4)a^2 u)u−(u′+(1/2)au)^2  = 1  u′′u−u′^2  = 1 (3)  u′′′u+u′′u′−2u′u′′ = 0  u′′′u−u′u′′ = 0 (4)  (4)÷uu′′ : ((u′′′)/(u′′))−((u′)/u) = 0  ln∣u′′∣−ln∣u∣ = C_1   u′′ = C_2 u  u = αe^((√C_2 )x) +βe^(−(√C_2 )x)  = αe^(C_3 x) +βe^(−C_3 x)   u′ = αC_3 e^(C_3 x) −βC_3 e^(−C_3 x)   u′′ = αC_3 ^2 e^(C_3 x) +βC_3 ^2 e^(−C_3 x)   (3) : (αC_3 ^2 e^(C_3 x) +βC_3 ^2 e^(−C_3 x) )(αe^(C_3 x) +βe^(−C_3 x) )−(αe^(C_3 x) −βe^(−C_3 x) )^2  = 1  α^2 C_3 ^2 −α^2  = 0 (5)  β^2 C_3 ^2 −β^2  = 0 (6)  4αβC_3 ^2  = 1 (7)  (5) and (6) : C_3  = ±1  (7) : β = (1/(4α))  u = αe^x +(1/(4α))e^(−x)  or αe^(−x) +(1/(4α))e^x   (2) : y = e^((1/4)ax) (αe^x +(1/(4α))e^(−x) ) or e^((1/4)ax) (αe^(−x) +(1/(4α))e^x )
yyy2=eax(1)Lety=e12axu(2)y=e12ax(u+12au)y=e12ax(u+au+14a2u)(1):(u+au+14a2u)u(u+12au)2=1uuu2=1(3)uu+uu2uu=0uuuu=0(4)(4)÷uu:uuuu=0lnulnu=C1u=C2uu=αeC2x+βeC2x=αeC3x+βeC3xu=αC3eC3xβC3eC3xu=αC32eC3x+βC32eC3x(3):(αC32eC3x+βC32eC3x)(αeC3x+βeC3x)(αeC3xβeC3x)2=1α2C32α2=0(5)β2C32β2=0(6)4αβC32=1(7)(5)and(6):C3=±1(7):β=14αu=αex+14αexorαex+14αex(2):y=e14ax(αex+14αex)ore14ax(αex+14αex)
Commented by BHOOPENDRA last updated on 26/Dec/20
thanks alot sir
thanksalotsirthanksalotsir

Leave a Reply

Your email address will not be published. Required fields are marked *