Menu Close

z-1-i-3-express-z-in-the-form-r-cos-isin-also-express-z-7-in-the-form-re-i-




Question Number 65168 by Rio Michael last updated on 25/Jul/19
z = 1− i(√3)  express z in the form  r(cosθ +isinθ) also express z^7  in the form  re^(iθ) .
$${z}\:=\:\mathrm{1}−\:\mathrm{i}\sqrt{\mathrm{3}} \\ $$$${express}\:{z}\:{in}\:{the}\:{form}\:\:{r}\left({cos}\theta\:+\mathrm{i}{sin}\theta\right)\:{also}\:{express}\:{z}^{\mathrm{7}} \:{in}\:{the}\:{form} \\ $$$${re}^{\mathrm{i}\theta} . \\ $$
Answered by mr W last updated on 25/Jul/19
z=1−i(√3)  =2((1/2)−i((√3)/2))  =2(cos ((5π)/3)+i sin ((5π)/3))  =2e^(i((5π)/3))
$${z}=\mathrm{1}−{i}\sqrt{\mathrm{3}} \\ $$$$=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}\left(\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{3}}+{i}\:\mathrm{sin}\:\frac{\mathrm{5}\pi}{\mathrm{3}}\right) \\ $$$$=\mathrm{2}{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{3}}} \\ $$
Answered by meme last updated on 25/Jul/19
z=2(((1−i(√3))/2))=2{cos(−(Π/3))+isin(−(Π/3))}          z^7 =2^7 (cos(−((7Π)/3))+isin(−((7Π)/3))
$${z}=\mathrm{2}\left(\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\mathrm{2}\left\{{cos}\left(−\frac{\Pi}{\mathrm{3}}\right)+{isin}\left(−\frac{\Pi}{\mathrm{3}}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:{z}^{\mathrm{7}} =\mathrm{2}^{\mathrm{7}} \left({cos}\left(−\frac{\mathrm{7}\Pi}{\mathrm{3}}\right)+{isin}\left(−\frac{\mathrm{7}\Pi}{\mathrm{3}}\right)\right. \\ $$
Commented by meme last updated on 25/Jul/19
z^7 =128e^(i((7Π)/3))
$${z}^{\mathrm{7}} =\mathrm{128}{e}^{{i}\frac{\mathrm{7}\Pi}{\mathrm{3}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *