Menu Close

z-2-7z-16-i-z-11-




Question Number 151468 by peter frank last updated on 21/Aug/21
z^2 −7z+16=i(z−11)
$$\mathrm{z}^{\mathrm{2}} −\mathrm{7z}+\mathrm{16}=\mathrm{i}\left(\mathrm{z}−\mathrm{11}\right) \\ $$$$ \\ $$
Answered by peter frank last updated on 21/Aug/21
z^2 −7z−iz+16+11i=0  z^2 −(7+i)z+16+11i=0  z=(((7+i)±(√((7+i)^2 −4(1)(16+11i))))/2)  ......
$$\mathrm{z}^{\mathrm{2}} −\mathrm{7z}−\mathrm{iz}+\mathrm{16}+\mathrm{11i}=\mathrm{0} \\ $$$$\mathrm{z}^{\mathrm{2}} −\left(\mathrm{7}+\mathrm{i}\right)\mathrm{z}+\mathrm{16}+\mathrm{11i}=\mathrm{0} \\ $$$$\mathrm{z}=\frac{\left(\mathrm{7}+\mathrm{i}\right)\pm\sqrt{\left(\mathrm{7}+\mathrm{i}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}\right)\left(\mathrm{16}+\mathrm{11i}\right)}}{\mathrm{2}} \\ $$$$…… \\ $$
Commented by MJS_new last updated on 22/Aug/21
you get the same  ...  z=(((7+i)±(√(−16−30i)))/2)  (√(−16−30i))=3−5i  ⇒  z=2+3i∨z=5−2i
$$\mathrm{you}\:\mathrm{get}\:\mathrm{the}\:\mathrm{same} \\ $$$$… \\ $$$${z}=\frac{\left(\mathrm{7}+\mathrm{i}\right)\pm\sqrt{−\mathrm{16}−\mathrm{30i}}}{\mathrm{2}} \\ $$$$\sqrt{−\mathrm{16}−\mathrm{30i}}=\mathrm{3}−\mathrm{5i} \\ $$$$\Rightarrow \\ $$$${z}=\mathrm{2}+\mathrm{3i}\vee{z}=\mathrm{5}−\mathrm{2i} \\ $$
Answered by MJS_new last updated on 21/Aug/21
z^2 −(7+i)z+16+11i=0  z=t+((7+i)/2)  t^2 +4+((15)/2)i=0  t=±(√(−4−((15)/2)i))=±((3/2)−(5/2)i)  z=2+3i∨z=5−2i
$${z}^{\mathrm{2}} −\left(\mathrm{7}+\mathrm{i}\right){z}+\mathrm{16}+\mathrm{11i}=\mathrm{0} \\ $$$${z}={t}+\frac{\mathrm{7}+\mathrm{i}}{\mathrm{2}} \\ $$$${t}^{\mathrm{2}} +\mathrm{4}+\frac{\mathrm{15}}{\mathrm{2}}\mathrm{i}=\mathrm{0} \\ $$$${t}=\pm\sqrt{−\mathrm{4}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{i}}=\pm\left(\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{i}\right) \\ $$$${z}=\mathrm{2}+\mathrm{3i}\vee{z}=\mathrm{5}−\mathrm{2i} \\ $$
Commented by peter frank last updated on 22/Aug/21
more step  sir not understood
$$\mathrm{more}\:\mathrm{step}\:\:\mathrm{sir}\:\mathrm{not}\:\mathrm{understood} \\ $$
Commented by MJS_new last updated on 22/Aug/21
x^2 +px+q=0  let x=t−(p/2)  (just another version to get the usual term]  t^2 −(p^2 /4)+q=0  t=±(√((p^2 /4)−q))  p=−(7+i)∧q=16+11i  ⇒  t=±(√(−4−((15)/2)i))  (a+bi)^2 =−4−((15)/2)i  a^2 −b^2 +2abi=−4−((15)/2)i  ⇒  a^2 −b^2 =−4∧2ab=−((15)/2) ⇒ a=±(3/2)∧b=∓(5/2)  ±(√(−4−((15)/2)i))=±((3/2)−(5/2)i)
$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0} \\ $$$$\mathrm{let}\:{x}={t}−\frac{{p}}{\mathrm{2}}\:\:\left(\mathrm{just}\:\mathrm{another}\:\mathrm{version}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{usual}\:\mathrm{term}\right] \\ $$$${t}^{\mathrm{2}} −\frac{{p}^{\mathrm{2}} }{\mathrm{4}}+{q}=\mathrm{0} \\ $$$${t}=\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}} \\ $$$${p}=−\left(\mathrm{7}+\mathrm{i}\right)\wedge{q}=\mathrm{16}+\mathrm{11i} \\ $$$$\Rightarrow \\ $$$${t}=\pm\sqrt{−\mathrm{4}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{i}} \\ $$$$\left({a}+{b}\mathrm{i}\right)^{\mathrm{2}} =−\mathrm{4}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{i} \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\mathrm{i}=−\mathrm{4}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{i} \\ $$$$\Rightarrow \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} =−\mathrm{4}\wedge\mathrm{2}{ab}=−\frac{\mathrm{15}}{\mathrm{2}}\:\Rightarrow\:{a}=\pm\frac{\mathrm{3}}{\mathrm{2}}\wedge{b}=\mp\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\pm\sqrt{−\mathrm{4}−\frac{\mathrm{15}}{\mathrm{2}}\mathrm{i}}=\pm\left(\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{2}}\mathrm{i}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *