Question Number 85668 by Rio Michael last updated on 23/Mar/20
$$\mathrm{z}\:=\:\mathrm{2}\:+\:\mathrm{i}\: \\ $$$$\mathrm{find}\:\mathrm{arg}\left(\mathrm{z}\right) \\ $$
Commented by mathmax by abdo last updated on 24/Mar/20
$$\mid{z}\mid=\sqrt{\mathrm{2}^{\mathrm{2}} \:+\mathrm{1}^{\mathrm{2}} }=\sqrt{\mathrm{5}}\:\Rightarrow\:{z}\:=\sqrt{\mathrm{5}}\left\{\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}{i}\right\}\:={r}\:{e}^{{i}\theta} \:\Rightarrow \\ $$$${r}=\sqrt{\mathrm{5}}{and}\:{cos}\theta\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\:\:,{sin}\theta\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\Rightarrow{tan}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\theta=\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{2}}−{arctan}\left(\mathrm{2}\right) \\ $$$${arg}\left({z}\right)\equiv\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\mathrm{2}\right)\:\left[\mathrm{2}\pi\right] \\ $$
Commented by Rio Michael last updated on 24/Mar/20
$$\mathrm{thanks}\:\mathrm{sir} \\ $$