Menu Close

z-2iz-3-3i-geometrical-representation-is-




Question Number 146041 by alcohol last updated on 10/Jul/21
z′ = 2iz + (3−3i)  geometrical representation is?
z=2iz+(33i)geometricalrepresentationis?
Answered by ajfour last updated on 10/Jul/21
(dx/dt)+i(dy/dt)=2i(x+iy)+3(1−i)  ⇒ (dx/dt)=3−2y      (dy/dt)=2x−3  (dx/(3−2y))=(dy/(2x−3))  ∫(2x−3)dx+∫(2y−3)dy=c  x^2 −3x+y^2 −3y=c  (x−(3/2))^2 +(y−(3/2))^2 =c+(9/2)
dxdt+idydt=2i(x+iy)+3(1i)dxdt=32ydydt=2x3dx32y=dy2x3(2x3)dx+(2y3)dy=cx23x+y23y=c(x32)2+(y32)2=c+92
Commented by alcohol last updated on 10/Jul/21
z′ is the image of z
zistheimageofz
Commented by mr W last updated on 10/Jul/21
how is your image of z defined?
howisyourimageofzdefined?
Commented by alcohol last updated on 10/Jul/21
it is a transformation  (similitude) and am asked to give the  geometrical interpretion
itisatransformation(similitude)andamaskedtogivethegeometricalinterpretion
Answered by Ar Brandon last updated on 10/Jul/21
Soient A(a) et B(a) deux points distinct et A′(a′), B′(b′)   leurs images par s, alors on a;  a′=2ia+(3−3i), b′=2ib+(3−3i)  a′−b′=2i(a−b)⇒∣a′−b′∣=2∣a−b∣. Par suite A′B′=2AB  s est une similitude de rapport 2.
SoientA(a)etB(a)deuxpointsdistinctetA(a),B(b)leursimagespars,alorsona;a=2ia+(33i),b=2ib+(33i)ab=2i(ab)⇒∣ab∣=2ab.ParsuiteAB=2ABsestunesimilitudederapport2.
Answered by physicstutes last updated on 11/Jul/21
let the image of a be a′ and the image of b be  b′  then,  a′ = 2ia + (3−3i).....(i)                b′ = 2ib + (3−3i)......(ii)  (ii)−(i) ⇒  b′−a′ = 2i(b−a)  ⇒ ∣b′−a′∣ = 2∣b−a∣  So we say your transformation call it f is a similitude of radius  2, since similitudes are enlargments . Then Geometrically  you will inteprete that f is an enlargment scale factor 2  followed by a translation about the vector  ((3),((−3)) )
lettheimageofabeaandtheimageofbbebthen,a=2ia+(33i)..(i)b=2ib+(33i)(ii)(ii)(i)ba=2i(ba)ba=2baSowesayyourtransformationcallitfisasimilitudeofradius2,sincesimilitudesareenlargments.ThenGeometricallyyouwillintepretethatfisanenlargmentscalefactor2followedbyatranslationaboutthevector(33)

Leave a Reply

Your email address will not be published. Required fields are marked *