Menu Close

z-4-49-20-6-z-




Question Number 145344 by mathdanisur last updated on 04/Jul/21
z^4  = 49 - 20(√6)  ⇒ z=?
$$\boldsymbol{{z}}^{\mathrm{4}} \:=\:\mathrm{49}\:-\:\mathrm{20}\sqrt{\mathrm{6}}\:\:\Rightarrow\:\boldsymbol{{z}}=? \\ $$
Answered by liberty last updated on 04/Jul/21
 z^2  = (√(49−2(√(600)))) =(√((25+24)−2(√(25×24))))  z^2  = (√(25))−(√(24)) = 5−2(√6)   z =(√(5−2(√6))) =(√((3+2)−2(√(3×2))))   z  = (√3)−(√2)
$$\:{z}^{\mathrm{2}} \:=\:\sqrt{\mathrm{49}−\mathrm{2}\sqrt{\mathrm{600}}}\:=\sqrt{\left(\mathrm{25}+\mathrm{24}\right)−\mathrm{2}\sqrt{\mathrm{25}×\mathrm{24}}} \\ $$$${z}^{\mathrm{2}} \:=\:\sqrt{\mathrm{25}}−\sqrt{\mathrm{24}}\:=\:\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}\: \\ $$$${z}\:=\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}}\:=\sqrt{\left(\mathrm{3}+\mathrm{2}\right)−\mathrm{2}\sqrt{\mathrm{3}×\mathrm{2}}} \\ $$$$\:{z}\:\:=\:\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\: \\ $$
Commented by mathdanisur last updated on 04/Jul/21
thank you Ser
$${thank}\:{you}\:{Ser} \\ $$
Answered by Olaf_Thorendsen last updated on 04/Jul/21
z^4  = 49−20(√6)  z = ±((49−20(√6)))^(1/4)  or ±((49−20(√6)))^(1/4) .i    ∣z∣ = ((49−20(√6)))^(1/4)   ∣z∣ = (((5−2(√6))^2 ))^(1/4)   ∣z∣ = (√(5−2(√6)))  ∣z∣ = (√(((√3)−(√2))^2 ))  ∣z∣ = (√3)−(√2)    Finally, z = ±((√3)−(√2)), ±((√3)−(√2))i
$${z}^{\mathrm{4}} \:=\:\mathrm{49}−\mathrm{20}\sqrt{\mathrm{6}} \\ $$$${z}\:=\:\pm\sqrt[{\mathrm{4}}]{\mathrm{49}−\mathrm{20}\sqrt{\mathrm{6}}}\:\mathrm{or}\:\pm\sqrt[{\mathrm{4}}]{\mathrm{49}−\mathrm{20}\sqrt{\mathrm{6}}}.{i} \\ $$$$ \\ $$$$\mid{z}\mid\:=\:\sqrt[{\mathrm{4}}]{\mathrm{49}−\mathrm{20}\sqrt{\mathrm{6}}} \\ $$$$\mid{z}\mid\:=\:\sqrt[{\mathrm{4}}]{\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}\right)^{\mathrm{2}} } \\ $$$$\mid{z}\mid\:=\:\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}} \\ $$$$\mid{z}\mid\:=\:\sqrt{\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mid{z}\mid\:=\:\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Finally},\:{z}\:=\:\pm\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right),\:\pm\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right){i} \\ $$
Commented by mathdanisur last updated on 04/Jul/21
Thank you Ser, answer: (√3)−(√2)
$${Thank}\:{you}\:{Ser},\:{answer}:\:\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$
Commented by mr W last updated on 04/Jul/21
if (√3)−(√2) is a root, then  −((√3)−(√2)) is also a root, and  ((√3)−(√2))i is also a root, and  −((√3)−(√2))i is also a root.
$${if}\:\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\:{is}\:{a}\:{root},\:{then} \\ $$$$−\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)\:{is}\:{also}\:{a}\:{root},\:{and} \\ $$$$\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right){i}\:{is}\:{also}\:{a}\:{root},\:{and} \\ $$$$−\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right){i}\:{is}\:{also}\:{a}\:{root}. \\ $$
Commented by mathdanisur last updated on 04/Jul/21
Thanks Sir
$${Thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *