Question Number 49272 by rahul 19 last updated on 05/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18

Commented by rahul 19 last updated on 05/Dec/18
thank you sir! ��
Answered by mr W last updated on 05/Dec/18
![Z=r(cos θ+i sin θ) ∣Z∣=r≥3 Z+(1/Z)=r(cos θ+i sin θ)+(1/(r(cos θ+i sin θ))) Z+(1/Z)=r(cos θ+i sin θ)+((cos θ−i sin θ)/r) Z+(1/Z)=(r+(1/r))cos θ+i (r−(1/r))sin θ Z+(1/Z)=(1/r)[(r^2 +1)cos θ+i (r^2 −1)sin θ] ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 cos^2 θ+(r^2 −1)^2 sin^2 θ)) ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 −[(r^2 +1)^2 −(r^2 −1)^2 ]sin^2 θ)) ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 −4r^2 sin^2 θ)) ∣Z+(1/Z)∣=(√((r+(1/r))^2 −4sin^2 θ)) ≥(√((r+(1/r))^2 −4)) =(√((r−(1/r))^2 )) =∣r−(1/r)∣ (increasing function upon r=1) ≥∣3−(1/3)∣=(8/3)=2.67](https://www.tinkutara.com/question/Q49290.png)
Commented by rahul 19 last updated on 05/Dec/18
thank you sir! ��