Menu Close

Z-C-satisfies-the-condition-Z-3-Then-find-the-least-value-of-Z-1-Z-




Question Number 49272 by rahul 19 last updated on 05/Dec/18
ZεC satisfies the condition ∣Z∣≥3.  Then find the least value of ∣Z+(1/Z)∣ ?
ZϵCsatisfiestheconditionZ∣⩾3.ThenfindtheleastvalueofZ+1Z?
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18
Commented by rahul 19 last updated on 05/Dec/18
thank you sir! ��
Answered by mr W last updated on 05/Dec/18
Z=r(cos θ+i sin θ)  ∣Z∣=r≥3    Z+(1/Z)=r(cos θ+i sin θ)+(1/(r(cos θ+i sin θ)))  Z+(1/Z)=r(cos θ+i sin θ)+((cos θ−i sin θ)/r)  Z+(1/Z)=(r+(1/r))cos θ+i (r−(1/r))sin θ  Z+(1/Z)=(1/r)[(r^2 +1)cos θ+i (r^2 −1)sin θ]  ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 cos^2  θ+(r^2 −1)^2 sin^2  θ))  ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 −[(r^2 +1)^2 −(r^2 −1)^2 ]sin^2  θ))  ∣Z+(1/Z)∣=(1/r)(√((r^2 +1)^2 −4r^2 sin^2  θ))  ∣Z+(1/Z)∣=(√((r+(1/r))^2 −4sin^2  θ))  ≥(√((r+(1/r))^2 −4))  =(√((r−(1/r))^2 ))  =∣r−(1/r)∣ (increasing function upon r=1)  ≥∣3−(1/3)∣=(8/3)=2.67
Z=r(cosθ+isinθ)Z∣=r3Z+1Z=r(cosθ+isinθ)+1r(cosθ+isinθ)Z+1Z=r(cosθ+isinθ)+cosθisinθrZ+1Z=(r+1r)cosθ+i(r1r)sinθZ+1Z=1r[(r2+1)cosθ+i(r21)sinθ]Z+1Z∣=1r(r2+1)2cos2θ+(r21)2sin2θZ+1Z∣=1r(r2+1)2[(r2+1)2(r21)2]sin2θZ+1Z∣=1r(r2+1)24r2sin2θZ+1Z∣=(r+1r)24sin2θ(r+1r)24=(r1r)2=∣r1r(increasingfunctionuponr=1)⩾∣313∣=83=2.67
Commented by rahul 19 last updated on 05/Dec/18
thank you sir! ��

Leave a Reply

Your email address will not be published. Required fields are marked *