Question Number 49272 by rahul 19 last updated on 05/Dec/18
$${Z}\epsilon\mathbb{C}\:{satisfies}\:{the}\:{condition}\:\mid{Z}\mid\geqslant\mathrm{3}. \\ $$$${Then}\:{find}\:{the}\:{least}\:{value}\:{of}\:\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid\:? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18
Commented by rahul 19 last updated on 05/Dec/18
thank you sir!
Answered by mr W last updated on 05/Dec/18
$${Z}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right) \\ $$$$\mid{Z}\mid={r}\geqslant\mathrm{3} \\ $$$$ \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)+\frac{\mathrm{1}}{{r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)} \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}={r}\left(\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta\right)+\frac{\mathrm{cos}\:\theta−{i}\:\mathrm{sin}\:\theta}{{r}} \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}=\left({r}+\frac{\mathrm{1}}{{r}}\right)\mathrm{cos}\:\theta+{i}\:\left({r}−\frac{\mathrm{1}}{{r}}\right)\mathrm{sin}\:\theta \\ $$$${Z}+\frac{\mathrm{1}}{{Z}}=\frac{\mathrm{1}}{{r}}\left[\left({r}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{cos}\:\theta+{i}\:\left({r}^{\mathrm{2}} −\mathrm{1}\right)\mathrm{sin}\:\theta\right] \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\frac{\mathrm{1}}{{r}}\sqrt{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+\left({r}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\frac{\mathrm{1}}{{r}}\sqrt{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left[\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left({r}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \right]\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\frac{\mathrm{1}}{{r}}\sqrt{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$\mid{Z}+\frac{\mathrm{1}}{{Z}}\mid=\sqrt{\left({r}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} −\mathrm{4sin}^{\mathrm{2}} \:\theta} \\ $$$$\geqslant\sqrt{\left({r}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} −\mathrm{4}} \\ $$$$=\sqrt{\left({r}−\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} } \\ $$$$=\mid{r}−\frac{\mathrm{1}}{{r}}\mid\:\left({increasing}\:{function}\:{upon}\:{r}=\mathrm{1}\right) \\ $$$$\geqslant\mid\mathrm{3}−\frac{\mathrm{1}}{\mathrm{3}}\mid=\frac{\mathrm{8}}{\mathrm{3}}=\mathrm{2}.\mathrm{67} \\ $$
Commented by rahul 19 last updated on 05/Dec/18
thank you sir!