Menu Close

z-C-z-3i-z-i-R-z-3-z-1-I-find-z-




Question Number 176513 by CrispyXYZ last updated on 20/Sep/22
z∈C, ((z−3i)/(z+i))∈R^−  ,  ((z−3)/(z+1))∈I  find z.
zC,z3iz+iR,z3z+1Ifindz.
Answered by a.lgnaoui last updated on 20/Sep/22
Posons   z=x+iy  ((z−3i)/(z+i))=((x+(y−3)i)/(x+(y+1)i))=(([x+(y−3)i][x−(y+1)i])/(x^2 +(y+1)^2 ))=(([x^2 +(y+1)(y−3)]+[(x(y−3)−x(y+1))i])/(x^2 −(y+1)^2 ))    ((z−3i)/(z+i))= (((x^2 +y^2 −2y−3)−(4x)i)/(x^2 +(y+1)^2 ))    ((z−3)/(z+1))=(((x−3)+yi)/((x+1)+yi))=(([(x−3)+yi][(x+1)−yi])/((x+1)^2 +y^2 ))=(([(x−3)(x+1)+y^2 ]+[((x+1)y−(x−3)y)i)/((x+1)^2 +y^2 ))     ((z−3)/(z+1))=(([x^2 +y^2 −2x−3]+(4y)i)/((x+1)^2 +y^2 ))    ((z−3i)/(z+i))∈R^−   ⇒x=0   ((z−3i)/(z+i))=((y^2 −2y−3)/((y+1)^2 ))<0  ((z−3)/(z+1)) imaginaire    x^2 +y^2 −2x−3=0  (y≠0)  avec x=0  donc    z  verifie  y=±(√3)        y=−(√3) rejete  y=+(√3)    ((z−3i)/(z+i))=((3−2(√3) −3)/(((√3) +1)^2 ))<0   et   ((z−3)/(z+1))=((4(√3) )/3)i ∈I   ⇒  z=(√3) i
Posonsz=x+iyz3iz+i=x+(y3)ix+(y+1)i=[x+(y3)i][x(y+1)i]x2+(y+1)2=[x2+(y+1)(y3)]+[(x(y3)x(y+1))i]x2(y+1)2z3iz+i=(x2+y22y3)(4x)ix2+(y+1)2z3z+1=(x3)+yi(x+1)+yi=[(x3)+yi][(x+1)yi](x+1)2+y2=[(x3)(x+1)+y2]+[((x+1)y(x3)y)i(x+1)2+y2z3z+1=[x2+y22x3]+(4y)i(x+1)2+y2z3iz+iRx=0z3iz+i=y22y3(y+1)2<0z3z+1imaginairex2+y22x3=0(y0)avecx=0donczverifiey=±3y=3rejetey=+3z3iz+i=3233(3+1)2<0etz3z+1=433iIz=3i

Leave a Reply

Your email address will not be published. Required fields are marked *