z-C-z-3i-z-i-R-z-3-z-1-I-find-z- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 176513 by CrispyXYZ last updated on 20/Sep/22 z∈C,z−3iz+i∈R−,z−3z+1∈Ifindz. Answered by a.lgnaoui last updated on 20/Sep/22 Posonsz=x+iyz−3iz+i=x+(y−3)ix+(y+1)i=[x+(y−3)i][x−(y+1)i]x2+(y+1)2=[x2+(y+1)(y−3)]+[(x(y−3)−x(y+1))i]x2−(y+1)2z−3iz+i=(x2+y2−2y−3)−(4x)ix2+(y+1)2z−3z+1=(x−3)+yi(x+1)+yi=[(x−3)+yi][(x+1)−yi](x+1)2+y2=[(x−3)(x+1)+y2]+[((x+1)y−(x−3)y)i(x+1)2+y2z−3z+1=[x2+y2−2x−3]+(4y)i(x+1)2+y2z−3iz+i∈R−⇒x=0z−3iz+i=y2−2y−3(y+1)2<0z−3z+1imaginairex2+y2−2x−3=0(y≠0)avecx=0donczverifiey=±3y=−3rejetey=+3z−3iz+i=3−23−3(3+1)2<0etz−3z+1=433i∈I⇒z=3i Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: ABC-sinA-cosB-tanC-find-the-value-of-cos-3-A-cos-2-A-cosA-Next Next post: Question-110980 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.