Menu Close

z-x-yi-C-z-x-y-C-proof-z-2-z-2-zz-so-z-0-1-z-z-z-2-




Question Number 33095 by 7991 last updated on 10/Apr/18
z=x+yi ∈ C  z^− =x−y ∈ C  proof ∣z∣^2 =∣z^2 ∣=zz^− , so z≠0 →(1/z)=(z^− /(∣z∣^2 ))
z=x+yiCz=xyCproofz2=∣z2∣=zz,soz01z=zz2
Answered by Rasheed.Sindhi last updated on 10/Apr/18
z=x+yi ∈ C , z^(−) =x−yi  ∣z∣=∣x+yi∣=(√(x^2 +y^2 ))  ∴ ∣z∣^2 =x^2 +y^2 .............A  ∣z^2 ∣=∣(x+yi)^2 ∣=∣x^2 −y^2 +2xyi∣        =(√((x^2 −y^2 )^2 +(2xy)^2 ))         =(√(x^4 +y^4 −2x^2 y^2 +4x^2 y^2 ))         =(√(x^4 +y^4 +2x^2 y^2 ))         =(√((x^2 +y^2 )^2 ))         =x^2 +y^2 ...............B  z.z^(−) =(x+yi)(x−yi)=(x)^2 −(yi)^2          =x^2 +y^2 .................C  From A,B & C       ∣z∣^2 =∣z^2 ∣=z.z^(−)      z.z^(−) =∣z^2 ∣⇒z=((∣z^2 ∣)/z^− )⇒(1/z)=(z^− /(∣z^2 ∣))
z=x+yiC,z=xyiz∣=∣x+yi∣=x2+y2z2=x2+y2.Az2∣=∣(x+yi)2∣=∣x2y2+2xyi=(x2y2)2+(2xy)2=x4+y42x2y2+4x2y2=x4+y4+2x2y2=(x2+y2)2=x2+y2Bz.z=(x+yi)(xyi)=(x)2(yi)2=x2+y2..CFromA,B&Cz2=∣z2∣=z.zz.z=∣z2∣⇒z=z2z1z=zz2

Leave a Reply

Your email address will not be published. Required fields are marked *