Menu Close

z-z-6-z-




Question Number 125538 by Mammadli last updated on 11/Dec/20
(√(−z)) = z + 6 ; (z=?)
$$\sqrt{−\boldsymbol{{z}}}\:=\:\boldsymbol{{z}}\:+\:\mathrm{6}\:;\:\left(\boldsymbol{{z}}=?\right) \\ $$
Answered by mr W last updated on 12/Dec/20
let x=(√(−z))>0  ⇒z=−x^2   ⇒x=−x^2 +6  ⇒x^2 +x−6=0  ⇒(x+3)(x−2)=0  ⇒x= 2, −3<0 (rejected)  ⇒z=−2^2 =−4
$${let}\:{x}=\sqrt{−{z}}>\mathrm{0} \\ $$$$\Rightarrow{z}=−{x}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=−{x}^{\mathrm{2}} +\mathrm{6} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{x}−\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+\mathrm{3}\right)\left({x}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\:\mathrm{2},\:−\mathrm{3}<\mathrm{0}\:\left({rejected}\right) \\ $$$$\Rightarrow{z}=−\mathrm{2}^{\mathrm{2}} =−\mathrm{4} \\ $$
Commented by Mammadli last updated on 12/Dec/20
Dear sir, how to answer only -4 or not...
Commented by mr W last updated on 12/Dec/20
you are right. x≥0!
$${you}\:{are}\:{right}.\:{x}\geqslant\mathrm{0}! \\ $$
Commented by Mammadli last updated on 12/Dec/20
dear sir, x≥−6 must pay the condition..
$$\boldsymbol{{dear}}\:\boldsymbol{{sir}},\:\boldsymbol{{x}}\geqslant−\mathrm{6}\:\boldsymbol{{must}}\:\boldsymbol{{pay}}\:\boldsymbol{{the}}\:\boldsymbol{{condition}}.. \\ $$
Commented by Mammadli last updated on 12/Dec/20
thks dear sir
$$\boldsymbol{{thks}}\:\boldsymbol{{dear}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *