Question Number 193099 by Mingma last updated on 04/Jun/23
Answered by som(math1967) last updated on 04/Jun/23
Commented by som(math1967) last updated on 04/Jun/23
$$\:{b}^{\mathrm{2}} =\frac{\mathrm{16}}{\:\sqrt{\mathrm{3}}}\:\:,\:\:{c}^{\mathrm{2}} =\frac{\mathrm{36}}{\:\sqrt{\mathrm{3}}} \\ $$$$\:{cos}\mathrm{60}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}=\frac{\frac{\mathrm{16}}{\:\sqrt{\mathrm{3}}}+\frac{\mathrm{36}}{\:\sqrt{\mathrm{3}}}−{a}^{\mathrm{2}} }{\mathrm{2}×\frac{\mathrm{4}×\mathrm{6}}{\:\sqrt{\mathrm{3}}}} \\ $$$$\Rightarrow\frac{\mathrm{24}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{52}}{\:\sqrt{\mathrm{3}}}\:−{a}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{\mathrm{52}−\mathrm{24}}{\:\sqrt{\mathrm{3}}} \\ $$$$\therefore\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×{a}^{\mathrm{2}} =\frac{\mathrm{28}}{\:\sqrt{\mathrm{3}}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}=\mathrm{7}{squ}\:={red}\:{area} \\ $$
Commented by Mingma last updated on 04/Jun/23
Perfect
Commented by Mingma last updated on 04/Jun/23
What's your solution for the green area?
Commented by math1234 last updated on 04/Jun/23
Commented by math1234 last updated on 04/Jun/23
Commented by math1234 last updated on 04/Jun/23