Menu Close

Show-that-for-all-a-b-R-i-ab-1-2-a-2-b-2-ii-a-b-2-2-a-2-b-2-iii-ab-1-2-a-b-for-a-b-0-such-that-a-and-b-have-square-roots-Help-




Question Number 193138 by Mastermind last updated on 04/Jun/23
Show that for all a,b∈R  i) ab≤(1/2)(a^2 +b^2 )  ii) (((a+b)/2))^2 ≤(a^2 +b^2 )  iii) (√(ab))≤(1/2)(a+b), for a,b≥0 such that  a and b have square roots.    Help
Showthatforalla,bRi)ab12(a2+b2)ii)(a+b2)2(a2+b2)iii)ab12(a+b),fora,b0suchthataandbhavesquareroots.Help
Answered by Subhi last updated on 04/Jun/23
(i) (a−b)^2 ≥0  a^2 +b^2 −2ab≥0  ab≤(1/2)(a^2 +b^2 )  (ii) (a+b)^2 =a^2 +b^2 +2ab  note that 2ab≤a^2 +b^2   a^2 +b^2 +2ab≤2(a^2 +b^2 )  (((a+b)^2 )/2)≤a^2 +b^2   (iii) ((√a)−(√b))^2 ≥0  a+b−2(√(ab)) ≥0  (√(ab))≤(1/2)(a+b)
(i)(ab)20a2+b22ab0ab12(a2+b2)(ii)(a+b)2=a2+b2+2abnotethat2aba2+b2a2+b2+2ab2(a2+b2)(a+b)22a2+b2(iii)(ab)20a+b2ab0ab12(a+b)
Answered by aba last updated on 04/Jun/23
i)(a−b)^2 ≥0 ⇒ ((a^2 +b^2 )/2)≥ab  ii)ab=(1/2)((a+b)^2 −(a^2 −b^2 ))≤((a^2 +b^2 )/2) ⇒ (((a^2 +b^2 ))/2)≤a^2 +b^2   iii)((√a)−(√b))^2 ≥0 ⇒ ab≤((a+b)/2)
i)(ab)20a2+b22abii)ab=12((a+b)2(a2b2))a2+b22(a2+b2)2a2+b2iii)(ab)20aba+b2

Leave a Reply

Your email address will not be published. Required fields are marked *