Menu Close

Solve-for-x-x-2-c-c-x-




Question Number 193130 by Frix last updated on 04/Jun/23
Solve for x  x^2 −c=(√(c−x))
Solveforxx2c=cx
Commented by aba last updated on 04/Jun/23
t=c−x≥0   x^2 −(t−x)=(√t) ⇒x^2 −x−(t+(√t))=0  Δ=(2(√t)+1)^2   x_1 =((1−(2(√t)+1))/2)=−(√t)  ∧ x_2 =((1+(2(√t)+1))/2)=1+(√t)  ⧫x=−(√(c−x)) ⇒ x^2 +x−c=0  Δ=1+4c>0  x=±(1/2)((√(4c+1)) −1) ✓  ⧫x=1+(√(c−x))  ⇒ x−1=(√(c−x)) ⇒ x^2 −x+(1−c)=0  Δ=1+4(c−1)=4c−3>0  x_1 =((1−(√(4c−3)))/2) ∧ x=((1+(√(4c−3)))/2)✓  S={((1+(√(4c−3)))/2);±(1/2)((√(4c+1))−1)}
t=cx0x2(tx)=tx2x(t+t)=0Δ=(2t+1)2x1=1(2t+1)2=tx2=1+(2t+1)2=1+tx=cxx2+xc=0Δ=1+4c>0x=±12(4c+11)x=1+cxx1=cxx2x+(1c)=0Δ=1+4(c1)=4c3>0x1=14c32x=1+4c32S={1+4c32;±12(4c+11)}
Answered by Mastermind last updated on 04/Jun/23
Solution  take square of both sides, we have  ⇒(x^2 −c)^2 =c−x  ⇒x^4 −2x^2 c+c^2 =c−x  ⇒c^2 −c−2x^2 c+x^4 −x=0  ⇒c^2 −(1+2x^2 )+x^4 −x=0 ∙∙∙∙∙∗  ⇒solve equation ∗ by using Almighty  formular (Quadratic formula)  c= ((−b±(√(b^2 −4ac)))/(2a))  where b=−(1+2x^2 ), a=1 and c=x^4 −4    therefore,   c=(((1+2x^2 )±(√((1+4x^2 +4x^4 )−4(x^4 −x))))/(2×1))  c=(((1+2x^2 ))/2) ± ((√(1+5x^2 ))/2)
Solutiontakesquareofbothsides,wehave(x2c)2=cxx42x2c+c2=cxc2c2x2c+x4x=0c2(1+2x2)+x4x=0solveequationbyusingAlmightyformular(Quadraticformula)c=b±b24ac2awhereb=(1+2x2),a=1andc=x44therefore,c=(1+2x2)±(1+4x2+4x4)4(x4x)2×1c=(1+2x2)2±1+5x22
Answered by aba last updated on 04/Jun/23
x=±(1/2)((√(4c+1))−1) ∨ x=(1/2)((√(4x−3))+1)
x=±12(4c+11)x=12(4x3+1)
Answered by Frix last updated on 04/Jun/23
Finding one solution using f(x)=f^(−1) (x)  y=(√(c−x)) ⇔ x=c−x^2 =−(x^2 −c)  ⇒  −x=(√(c−x)) ⇔ x^2 =c−x∧x<0 ⇒  x_1 =−((1+(√(4c+1)))/2)     [x_2 =−((1−(√(4c+1)))/2)≥0]    x^2 −c=(√(c−x))  parabola = positive half parabola ⇒ 2 solutions  Solving for c is easy  (x^2 −c)^2 =c−x  c^2 −(2x^2 +1)c+x(x^3 +1)=0  c=((2x^2 +1)/2)±((2x−1)/2)  c=x^2 −x+1∨c=x^2 +x  Now solve these for x  x=((1±(√(4c−3)))/2)∨x=−((1±(√(4c+1)))/2)  But 2 solutions are false  x_1 =−((1+(√(4c+1)))/2) [from above]  x_2 =((1+(√(4c−3)))/2) [because it must be >0 due                                 to symmetry of x^2 −c]
Findingonesolutionusingf(x)=f1(x)y=cxx=cx2=(x2c)x=cxx2=cxx<0x1=1+4c+12[x2=14c+120]x2c=cxparabola=positivehalfparabola2solutionsSolvingforciseasy(x2c)2=cxc2(2x2+1)c+x(x3+1)=0c=2x2+12±2x12c=x2x+1c=x2+xNowsolvetheseforxx=1±4c32x=1±4c+12But2solutionsarefalsex1=1+4c+12[fromabove]x2=1+4c32[becauseitmustbe>0duetosymmetryofx2c]
Commented by aba last updated on 04/Jun/23
����

Leave a Reply

Your email address will not be published. Required fields are marked *