Question Number 193130 by Frix last updated on 04/Jun/23

Commented by aba last updated on 04/Jun/23

Answered by Mastermind last updated on 04/Jun/23

Answered by aba last updated on 04/Jun/23

Answered by Frix last updated on 04/Jun/23
![Finding one solution using f(x)=f^(−1) (x) y=(√(c−x)) ⇔ x=c−x^2 =−(x^2 −c) ⇒ −x=(√(c−x)) ⇔ x^2 =c−x∧x<0 ⇒ x_1 =−((1+(√(4c+1)))/2) [x_2 =−((1−(√(4c+1)))/2)≥0] x^2 −c=(√(c−x)) parabola = positive half parabola ⇒ 2 solutions Solving for c is easy (x^2 −c)^2 =c−x c^2 −(2x^2 +1)c+x(x^3 +1)=0 c=((2x^2 +1)/2)±((2x−1)/2) c=x^2 −x+1∨c=x^2 +x Now solve these for x x=((1±(√(4c−3)))/2)∨x=−((1±(√(4c+1)))/2) But 2 solutions are false x_1 =−((1+(√(4c+1)))/2) [from above] x_2 =((1+(√(4c−3)))/2) [because it must be >0 due to symmetry of x^2 −c]](https://www.tinkutara.com/question/Q193150.png)
Commented by aba last updated on 04/Jun/23
����