Menu Close

a-1-a-2-a-n-are-mutually-distinct-and-is-a-am-sequence-if-a-1-a-2-a-n-A-and-a-1-2-a-2-2-a-n-2-B-find-the-am-sequence-




Question Number 193199 by mnjuly1970 last updated on 07/Jun/23
     a_1  , a_2  ,...,a_n  are  mutually distinct    and is a    am  sequence .     if a_( 1)  +a_( 2)  +...+a_n  =A     and       a_1 ^( 2)  + a_2 ^2  +..+ a_n ^( 2) = B      find  the  am  sequence.
$$ \\ $$$$\:\:\:{a}_{\mathrm{1}} \:,\:{a}_{\mathrm{2}} \:,…,{a}_{{n}} \:{are}\:\:{mutually}\:{distinct} \\ $$$$\:\:{and}\:{is}\:{a}\:\:\:\:{am}\:\:{sequence}\:. \\ $$$$\:\:\:{if}\:{a}_{\:\mathrm{1}} \:+{a}_{\:\mathrm{2}} \:+…+{a}_{{n}} \:={A} \\ $$$$\:\:\:{and}\:\: \\ $$$$\:\:\:{a}_{\mathrm{1}} ^{\:\mathrm{2}} \:+\:{a}_{\mathrm{2}} ^{\mathrm{2}} \:+..+\:{a}_{{n}} ^{\:\mathrm{2}} =\:{B} \\ $$$$\:\:\:\:{find}\:\:{the}\:\:{am}\:\:{sequence}. \\ $$
Answered by MM42 last updated on 07/Jun/23
let  x_1 =a  &  x_i −x_(i−1) =d  ⇒A=na+((n(n−1)d)/2) ⇒ (A^2 /n)=na^2 +n(n−1)ad+((n(n−1)^2 d^2 )/4)  (i)  x_i ^2 =(a+(i−1)d)^2 =a^2 +2ad(i−1)+(i−1)^2 d^2   ⇒Σ_(i=1) ^n x_i ^2 =na^2 +adn(n−1)+((n(n−1)(2n−1))/6)d^2   (ii)  (ii)−(i)⇒ ((nB−A^2 )/n)=((n(n^2 −1))/(12)) d^2   ⇒d=±((2(√(3(nB−A^2 ))))/(n(√(n^2 −1))))  ✓
$${let}\:\:{x}_{\mathrm{1}} ={a}\:\:\&\:\:{x}_{{i}} −{x}_{{i}−\mathrm{1}} ={d} \\ $$$$\Rightarrow{A}={na}+\frac{{n}\left({n}−\mathrm{1}\right){d}}{\mathrm{2}}\:\Rightarrow\:\frac{{A}^{\mathrm{2}} }{{n}}={na}^{\mathrm{2}} +{n}\left({n}−\mathrm{1}\right){ad}+\frac{{n}\left({n}−\mathrm{1}\right)^{\mathrm{2}} {d}^{\mathrm{2}} }{\mathrm{4}}\:\:\left({i}\right) \\ $$$${x}_{{i}} ^{\mathrm{2}} =\left({a}+\left({i}−\mathrm{1}\right){d}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{2}{ad}\left({i}−\mathrm{1}\right)+\left({i}−\mathrm{1}\right)^{\mathrm{2}} {d}^{\mathrm{2}} \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{\mathrm{2}} ={na}^{\mathrm{2}} +{adn}\left({n}−\mathrm{1}\right)+\frac{{n}\left({n}−\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{6}}{d}^{\mathrm{2}} \:\:\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right)\Rightarrow\:\frac{{nB}−{A}^{\mathrm{2}} }{{n}}=\frac{{n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{12}}\:{d}^{\mathrm{2}} \\ $$$$\Rightarrow{d}=\pm\frac{\mathrm{2}\sqrt{\mathrm{3}\left({nB}−{A}^{\mathrm{2}} \right)}}{{n}\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}\:\:\checkmark\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *