Menu Close

a-1-a-2-a-n-are-mutually-distinct-and-is-a-am-sequence-if-a-1-a-2-a-n-A-and-a-1-2-a-2-2-a-n-2-B-find-the-am-sequence-




Question Number 193199 by mnjuly1970 last updated on 07/Jun/23
     a_1  , a_2  ,...,a_n  are  mutually distinct    and is a    am  sequence .     if a_( 1)  +a_( 2)  +...+a_n  =A     and       a_1 ^( 2)  + a_2 ^2  +..+ a_n ^( 2) = B      find  the  am  sequence.
a1,a2,,anaremutuallydistinctandisaamsequence.ifa1+a2++an=Aanda12+a22+..+an2=Bfindtheamsequence.
Answered by MM42 last updated on 07/Jun/23
let  x_1 =a  &  x_i −x_(i−1) =d  ⇒A=na+((n(n−1)d)/2) ⇒ (A^2 /n)=na^2 +n(n−1)ad+((n(n−1)^2 d^2 )/4)  (i)  x_i ^2 =(a+(i−1)d)^2 =a^2 +2ad(i−1)+(i−1)^2 d^2   ⇒Σ_(i=1) ^n x_i ^2 =na^2 +adn(n−1)+((n(n−1)(2n−1))/6)d^2   (ii)  (ii)−(i)⇒ ((nB−A^2 )/n)=((n(n^2 −1))/(12)) d^2   ⇒d=±((2(√(3(nB−A^2 ))))/(n(√(n^2 −1))))  ✓
letx1=a&xixi1=dA=na+n(n1)d2A2n=na2+n(n1)ad+n(n1)2d24(i)xi2=(a+(i1)d)2=a2+2ad(i1)+(i1)2d2ni=1xi2=na2+adn(n1)+n(n1)(2n1)6d2(ii)(ii)(i)nBA2n=n(n21)12d2d=±23(nBA2)nn21

Leave a Reply

Your email address will not be published. Required fields are marked *