Menu Close

solve-and-solution-sin-1-x-dx-




Question Number 193192 by 073 last updated on 07/Jun/23
solve and solution  Ω=∫(√(sin^(−1) x))dx=?
solveandsolutionΩ=sin1xdx=?
Answered by Frix last updated on 07/Jun/23
∫(√(sin^(−1)  x)) dx =^([t=sin^(−1)  x])   =∫(√t) cos t dt =^([by parts])   =(√t) sin t −(1/2)∫((sin t)/( (√t)))dt            (1/2)∫((sin t)/( (√t)))dt =^([u=(√((2t)/π))])             =(√(π/2))∫sin ((πu^2 )/2) du =^([Fresnel])             =(√(π/2))S (u)  ⇒  Ω=x(√(sin^(−1)  x)) −(√(π/2)) S ((√((2sin^(−1)  x)/π))) +C
sin1xdx=[t=sin1x]=tcostdt=[byparts]=tsint12sinttdt12sinttdt=[u=2tπ]=π2sinπu22du=[Fresnel]=π2S(u)Ω=xsin1xπ2S(2sin1xπ)+C

Leave a Reply

Your email address will not be published. Required fields are marked *